Advertisement

Fibers and Polymers

, Volume 19, Issue 3, pp 641–647 | Cite as

Numerical Simulation of Tensile Behavior of 3D Orthogonal Woven Composites

  • Xiaori Yang
  • Xiaoping Gao
  • Yayun Ma
Article

Abstract

In this paper, the composite reinforced with three dimensional orthogonal woven fabric/epoxy resin was fabricated with vacuum assisted resin transfer model. The tensile behavior in 0° and 90° directions were experimentally executed. The tensile behavior of 3D orthogonal woven composite was numerical simulated based on the unit cell model and compared with the experimental result, the influence of crack damage and stress on fiber, resin and fiber/resin interface was analyzed. The maximum differences between experimental and simulated results are 3.23 % and 7.94 %. The verified model can be used to simulate the other static and dynamic mechanical properties and analyze the influence of the behavior of component material on the mechanical material properties of 3DOWC.

Keywords

3D orthogonal woven composites Finite element analysis Tensile behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Bogdanovich and M. H. Mohamed, Sampe J., 45, 8 (2009).Google Scholar
  2. 2.
    P. Tan, L. Y. Tong, G. P. Steven, and T. Ishikawa, Compos. Pt. A-Appl. Sci. Manuf., 31, 259 (2000).CrossRefGoogle Scholar
  3. 3.
    P. Tan, L. Y. Tong, and G. P. Steven, Compos. Pt. A-Appl. Sci. Manuf., 31, 273 (2000).CrossRefGoogle Scholar
  4. 4.
    K. Bilisik, J. Reinf. Plast. Comp., 29, 1173 (2010).CrossRefGoogle Scholar
  5. 5.
    L. Yao, Q. Rong, Z. D. Shan, and Y. P. Qiu, J. Compos. Mater., 47, 569 (2012).CrossRefGoogle Scholar
  6. 6.
    D. T. Fishpool, A. Rezai, D. Baker, S. L. Ogin, and P. A. Smith, Plast. Rubber Compos., 42, 108 (2013).CrossRefGoogle Scholar
  7. 7.
    A. P. Sharma, S. H. Khan, and V. Parameswaran, Compos. Pt. B-Eng., 125, 259 (2017).CrossRefGoogle Scholar
  8. 8.
    F. Cui, B. Z. Sun, and B. H. Gu, J. Compos. Mater., 45, 1499 (2010).Google Scholar
  9. 9.
    L. M. Jin, B. C. Jin, N. Kar, S. Nutt, B. Z. Sun, and B. H. Gu, Mater. Chemphys, 140, 183 (2013).Google Scholar
  10. 10.
    L. M. Jin, Y. Yao, Y. M. Yu, G. Rotich, B. Z. Sun, and B. H. Gu, Sci. Chinaphys. Mech., 57, 501 (2014).CrossRefGoogle Scholar
  11. 11.
    S. V. Lomov, A. E. Bogdanovich, D. S. Ivanov, D. Mungalov, M. Karahan, and I. Verpoest, Compos. Pt. A-Appl. Sci. Manuf., 40, 1134 (2009).CrossRefGoogle Scholar
  12. 12.
    D. S. Ivanov, S. V. Lomov, A. E. Bogdanovich, M. Karahan, and I. Verpoest, Compos. Pt. A-Appl. Sci. Manuf., 40, 1144 (2009).CrossRefGoogle Scholar
  13. 13.
    T. R. Walter, G. Subhash, B. V. Sankar, and C. F. Yen, Compos. Sci. Technol., 70, 2190 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Light Industry and TextileInner Mongolia University of TechnologyHohhotP.R. China

Personalised recommendations