Fibers and Polymers

, Volume 19, Issue 3, pp 580–586 | Cite as

Robust Water-Repellent Treatment of Cotton Fabrics with Polysiloxane Modified via Thiol-Ene Click Reaction

  • Haifeng Liu
  • Zhu Wang
  • Chengjun Sun


A facile and inexpensive way to prepare self-crosslinkable poly(dimethylsiloxane) (PDMS) for superhydrophobic treatment of cotton fabrics is reported in the study. Through thiol-ene click reaction between mercaptopropyltrimethoxysilane (MPTMOS) and vinyl-containing poly(dimethylsiloxane) (VPDMS), PDMS-g-TMOS can be simply and quickly synthesized. The trimethoxysilane group of PDMS-g-TMOS can react with hydroxyl group on cotton fabric and other -Si(OCH3)3 groups. The synthesized polysiloxane (PDMS-g-TMOS) was identified by FT-IR and 1H-NMR. The morphology of the treated cotton fabric was observed by SEM and XPS was used to analyze the elemental composition on the surface of cotton fabric. The analysis results indicated that the surface was fully covered with PDMS. Due to the low surface energy of PDMS and the rough surfaces of cotton fabric, the optimized water contact angle (WCA) and sliding angle were respectively 154°±0.4° and 14°±0.5°, indicating superhydrophobicity. Moreover, water spray test (AATCC Test Method 22-2010) was also applied to evaluate the water repellency of treated cotton fabric and a score of 90 was assigned according to AATCC Test Method 22-2010. The durability of treated cotton fabric was tested by 50 laundering cycles. The resultant WCA barely decreased and the score of water spray test dropped from 90 to 80, showing the reasonable wash durability.


Polydimethylsiloxane Thiol-ene click reaction Superhydrophobicity Water-repellent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12221_2018_7948_MOESM1_ESM.pdf (9.7 mb)
Robust water-repellent treatment of cotton fabrics with polysiloxane modified via thiol-ene click reaction


  1. 1.
    J. E. Mark, Acc. Chem. Res., 37, 946 (2004).CrossRefGoogle Scholar
  2. 2.
    E. Pouget, J. Tonnar, P. Lucas, P. Lacroix-Desmazes, F. Ganachaud, and B. Boutevin, Chem. Rev., 110, 1233 (2010).CrossRefGoogle Scholar
  3. 3.
    R. G. Jones, W. Ando, and J. Chojnowski, Silicon Chem., 1, 309 (2002).CrossRefGoogle Scholar
  4. 4.
    C. Rücker and K. Kümmerer, Chem. Rev., 115, 466 (2015).CrossRefGoogle Scholar
  5. 5.
    C. M. Grozea, S. Huang, and G. Liu, RSC Adv., 6, 20135 (2016).CrossRefGoogle Scholar
  6. 6.
    B. Liu, T. Tian, J. Yao, C. Huang, W. Tang, Z. Xiang, X. Xu, and J. Min, Nanomater. Nanotechno., 7, 1 (2017).CrossRefGoogle Scholar
  7. 7.
    G. N. Arjun, T. L. Lincy, T. S. Sajitha, S. Bhuvaneshwari, T. Deepthi, and D. Devapal, Mater. Sci. Forum, 830-831, 699 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. Meng, J. Chu, J. Xue, C. Liu, Z. Wang, and L. Zhang, Rsc Adv., 4, 31249 (2014).CrossRefGoogle Scholar
  9. 9.
    X. Hao, J. L. Jeffery, T. P. T. Le, G. McFarland, G. Johnson, R. J. Mulder, Q. Garrett, F. Manns, D. Nankivil, E. Arrieta, A. Ho, J. M. Parel, and T. C. Hughes, Biomaterials, 33, 5659 (2012).CrossRefGoogle Scholar
  10. 10.
    S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai, J. Mater. Chem. A, 5, 31 (2017).CrossRefGoogle Scholar
  11. 11.
    Z. Wang, Y. Wang, and G. Liu, Angew. Chem. Int. Edit., 55, 1291 (2016).CrossRefGoogle Scholar
  12. 12.
    Z. Wang, G. Liu, and S. Huan, Angew. Chem. Int. Edit., 55, 14610 (2016).CrossRefGoogle Scholar
  13. 13.
    Z. Wang, M. Lehtinen, and G. Liu, Angew. Chem. Int. Edit., 129, 13072 (2017).CrossRefGoogle Scholar
  14. 14.
    H. Liu, J. Huang, Z. Chen, G. Chen, K. Zhang, S. S. Al-Deysab, and Y. Lai, Chem. Eng. J., 333, 621 (2018).CrossRefGoogle Scholar
  15. 15.
    S. Gao, X. Dong, J. Huang, S. Li, Y. Li, Z. Chen, and Y. Lai, Chem. Eng. J., 330, 26 (2017).CrossRefGoogle Scholar
  16. 16.
    T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala, and R. H. A. Ras, Adv. Mater., 23, 673 (2011).CrossRefGoogle Scholar
  17. 17.
    X. Zhang, F. Shi, J. Niu, Y. Jiang, and Z. Wang, J. Mater. Chem., 18, 621 (2008).CrossRefGoogle Scholar
  18. 18.
    L. Li, B. Li, D. Jie, and J. Zhang, J. Mater. Chem. A, 4, 13677 (2016).CrossRefGoogle Scholar
  19. 19.
    C. Xue, Y. Li, P. Zhang, J. Ma, and S. Jia, ACS Appl. Mater. Inter., 6, 10153 (2014).CrossRefGoogle Scholar
  20. 20.
    Z. Yuan, J. Bin, X. Wang, M. Wang, J. Huang, C. Peng, S. Xing, J. Xiao, J. Zeng, X. Xiao, and X. Fu, Surf. Coat. Technol., 254, 97 (2014).CrossRefGoogle Scholar
  21. 21.
    R. P. S. Chakradhar, V. D. Kumar, J. L. Rao, and B. J. Basu, Appl. Surf. Sci., 257, 8569 (2011).CrossRefGoogle Scholar
  22. 22.
    X. Zhang, Y. Guo, Z. Zhang, and P. Zhang, Appl. Surf. Sci., 284, 319 (2013).CrossRefGoogle Scholar
  23. 23.
    S. E. Harton, C. G. Templeman, and B. Vyletel, Macromolecules, 43, 3173 (2010).CrossRefGoogle Scholar
  24. 24.
    Y. Huang, J. Zhou, B. Su, L. Shi, J. Wang, S. Chen, L. Wang, J. Zi, Y. Song, and L. Jiang, J. Am. Chem. Soc., 134, 17053 (2012).CrossRefGoogle Scholar
  25. 25.
    Z. Cui, L. Yin, Q. Wang, J. Ding, and Q. Chen, J. Colloid. Interf. Sci., 337, 531 (2009).CrossRefGoogle Scholar
  26. 26.
    D. Nystrom, J. Lindqvist, E. Ostmark, P. Antoni, A. Carlmark, A. Hult, and E. Malmstrom, ACS Appl. Mater. Inter., 1, 816 (2009).CrossRefGoogle Scholar
  27. 27.
    L. Xue, D. Wang, Z. Yang, Y. Liang, J. Zhang, and S. Feng, Eur. Polym. J., 49, 1050 (2013).CrossRefGoogle Scholar
  28. 28.
    C. Rissing and D. Son, Organometallics, 28, 3167 (2009).CrossRefGoogle Scholar
  29. 29.
    S. Deng, J. Huang, Z. Chen, and Y. Lai, Adv. Mater. Interfaces, 4, 1700268 (2017).CrossRefGoogle Scholar
  30. 30.
    X. Fan, K. Lai, L. Wang, H. Qiu, J. Yin, P. Zhao, S. L. Pan, J. B. Xu, and C. Wang, J. Mater. Chem. A, 3, 12179 (2015).CrossRefGoogle Scholar
  31. 31.
    H. Zhou, H. Wang, H. Niu, Y. Zhao, Z. Xu, and T. Lin, Adv. Funct. Mater., 27, 1604261 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Joint R&D Center of New Material ManufactureInstitute of Industry Technology Guangzhou & Chinese Academy of ScienceGuangzhouChina

Personalised recommendations