Fibers and Polymers

, Volume 19, Issue 3, pp 607–619 | Cite as

Comparative Performance of Copper and Silver Coated Stretchable Fabrics

  • Azam Ali
  • Vijay Baheti
  • Jiri Militky
  • Zaman Khan
  • Syed Qummer Zia Gilani


The present work described the development of multifunctional, electrically conductive and durable fabrics by coating of silver and copper particles using a dipping-drying method. The particles were directly grown on fabric structure to form electrically conductive fibers. Particles were found to fill the spaces between the microfibers, and were stacked together to form networks with high electrical conductivity. The electrically conductive fabrics showed low resistance with high stretch ability. The utility of conductive fabrics was analyzed for electromagnetic shielding ability over frequency range of 30 MHz to 1.5 GHz. The EMI shielding was found to increase with increase in concentration of copper and silver particles. Furthermore, the heating performance of the copper and silver coated fabric was studied through measuring the change in temperature at the surface of the fabric while applying a voltage difference across the fabric. The maximum temperature (119°C for silver and 112°C for copper) were obtained when the applied voltage was 10 V. Moreover, the role of deposited particles on antibacterial properties was examined against pathogenic bacteria such as Staphylococcus aureus and Escherichia coli. At the end, the durability of coated fabrics was examined against several washing cycles. The fabrics showed good retention of the particles, proved by small loss in the conductivity of the material after washing.


Silver particles Copper particles Stretchable conductive fabrics Smart textiles EMI shielding 


  1. 1.
    H. W. Cui, K. Suganuma, and H. Uchida, Nano Res., 8, 1604 (2015).CrossRefGoogle Scholar
  2. 2.
    Leitch, “Proceedings of New Generation of Wearable Systems for e-health”, pp.11-14, 2003.Google Scholar
  3. 3.
    V. S. Gowri, L. Almeida, de M. T. P. Amorim, J. Mater. Sci., 45, 2427 (2010).CrossRefGoogle Scholar
  4. 4.
    Philips and Levi, Tech. Text. Int., 10, 22 (2001).Google Scholar
  5. 5.
    S. I. Hu, J. L. H. P. Meng, Li, and G. Q. Ibekwe, Smart Mater. Struct., 21, 1 (2012).Google Scholar
  6. 6.
    J. Coosemans, B. Hermans, and R. Puers, Sensors Actuators A Phys., 130-131, 48 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Coyle, K. T. Lau and N. Moyna, Inf. Technol. Biomed., 14, 364 (2010).CrossRefGoogle Scholar
  8. 8.
    S. M. D. Eves, J. Green, C. van Heerden, and J. Mama, Philips Res. Intell. Fiber Gr., 10, 4 (2001).Google Scholar
  9. 9.
    P. M. S. Monika, Int. J. Polym. Text. Eng., 1, 1 (2014).Google Scholar
  10. 10.
    M. Havich, Am. Text. Int., Vol. 10, 1999.Google Scholar
  11. 11.
    Roberts, Just Style Featur., Vol. 10, 2000.Google Scholar
  12. 12.
    Lennox-Kerr, High Perform. Text., 11, 6 (1990).Google Scholar
  13. 13.
    F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. L. Yang, C. Li, and P. Willis, Adv. Mater., 15, 1161 (2003).CrossRefGoogle Scholar
  14. 14.
    X. Liu, H. Chang, Y. Li, W. T. S. Huck, and Z. Zheng, Appl. Mater. Interfaces, 529–535 (2010).Google Scholar
  15. 15.
    N. K. Bashir, T. Skrifvars, and M. Persson, Polym. Adv. Technol., 22, 214 (2011).CrossRefGoogle Scholar
  16. 16.
    A. P. Maity, S. Chatterjee, A. Singh, and B. Singh, J. Text. Inst., 105, 887 (2014).CrossRefGoogle Scholar
  17. 17.
    S. Hu, L. B. Pasta, M. La Mantia, F. Cui, L. F. Jeong, Y. Deshazer, H. D. Choi, J. W. Han, and S. M. Cui, Nano Lett., 10, 708 (2010).CrossRefGoogle Scholar
  18. 18.
    T. Yamashita, T. Khumpuang, S. Miyake, and K. Itoh, Electron. Commun. Japan, 97, 48 (2014).CrossRefGoogle Scholar
  19. 19.
    T. Ramachandran and C. Vigneswaran, J. Ind. Text., 39, 81 (2009).CrossRefGoogle Scholar
  20. 20.
    J. Molina, A. I. del Río, J. Bonastre, and F. Cases, Eur. Polym. J., 45, 1302 (2009).CrossRefGoogle Scholar
  21. 21.
    A. J. Patil and S. C. Deogaonkar, Text. Res. J., 82, 1517 (2012).CrossRefGoogle Scholar
  22. 22.
    Z. Yildiz, I. Usta, and A. Gungor, Text. Res. J., 82, 2137 (2012).CrossRefGoogle Scholar
  23. 23.
    J. N. Coleman, U. Khan, and Y. K. Gun'ko, Adv. Mater., 44, 689 (2003).Google Scholar
  24. 24.
    M. I. H. Panhuis, J. Mater. Chem., 16, 3598 (2006).CrossRefGoogle Scholar
  25. 25.
    H. C. Chen, K. C. Lee, and J. H. Lin, Compos. Pt. A-Appl. Sci. Manuf., 25, 1249 (2004).CrossRefGoogle Scholar
  26. 26.
    J. Paul, G. R. Torah, and K. Yang, Meas. Sci. Technol., 25, 25006 (2014).CrossRefGoogle Scholar
  27. 27.
    K. W. Oh, H. J. Park, and S. H. Kim, J. Appl. Polym. Sci., 88, 1225 (2003).CrossRefGoogle Scholar
  28. 28.
    A. Pentland and H. Tan, “First IEEE International Symposium on Wearable Computers”, pp.167–168, 1997.Google Scholar
  29. 29.
    E. G. Han, E. A. Kim, and K. W. Oh, Synth. Met., 123, 469 (2001).CrossRefGoogle Scholar
  30. 30.
    Z. An, X. Zhang, and H. Li, J. Alloys Compd., 621, 99 (2015).CrossRefGoogle Scholar
  31. 31.
    J. W. I. Ge, S. X. Liu, and C. F. Zhang, PubMed., 32, 118 (2012).Google Scholar
  32. 32.
    AATCC Test Method 147, “Antibacterial Activity Assessment of Textile Materials: Parallel Streak Method”, American Association of Textile Chemists and Colorists, North Carolina, USA, 2011.Google Scholar
  33. 33.
    T. Suwatthanarak, B. Than-ardna, and D. Danwanichakul, Mater. Lett., 168, 31 (2016).CrossRefGoogle Scholar
  34. 34.
    A. Sheffield and M. J. Doyle, Wool, Text. Res. J., 75, 203 (2002).CrossRefGoogle Scholar
  35. 35.
    Y. Kobayashi, M. Kamimaru, K. Tsuboyama, T. Nakanishi, and J. Komiyama, Text. Res. J., 76, 695 (2006).CrossRefGoogle Scholar
  36. 36.
    A. K. Sasmal, S. Dutta, and T. Pal, Dalt. Trans., 45, 3139 (2016).CrossRefGoogle Scholar
  37. 37.
    T. A. Lastovina, A. P. Budnyk, G. A. Khaishbashev, E. A. Kudryavtsev, and A. V. Soldatov, J. Serbian Chem. Soc., 81, 751 (2016).CrossRefGoogle Scholar
  38. 38.
    D. S. Cui, H. W. Q. Fan, Polym. Int., 62, 1644 (2013).Google Scholar
  39. 39.
    R. Haggenmueller, F. Du, J. E. Fischer, and K. I. Winey, Polymer (Guildf)., 47, 2381 (2006).CrossRefGoogle Scholar
  40. 40.
    S. T. A. Hamdani, P. Potluri, and A. Fernando, Materials (Basel), 6, 1072 (2013).CrossRefGoogle Scholar
  41. 41.
    L. R. Pahalagedara, I. W. Siriwardane, N. D. Tissera, R. N. Wijesena, and K. M. N. de Silva, RSC Adv., 7, 19174 (2017).CrossRefGoogle Scholar
  42. 42.
    W. Studer, A. M. Limbach, L. K. van Duc, L. Krumeich, F. Athanassiou, E. K. Gerber, L. C. Moch, and H. Stark, Toxicol. Lett., 197, 169 (2010).CrossRefGoogle Scholar
  43. 43.
    S. Karlsson, H. L. Cronholm, P. Hedberg, Y. Tornberg, M. de Battice, L. Svedhem, and I. Wallinder, Toxicology, 313, 59 (2013).CrossRefGoogle Scholar
  44. 44.
    M. Zheng, F. Davidson, and X. Huang, J. Am. Chem. Soc., 125, 7790 (2003).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Azam Ali
    • 1
  • Vijay Baheti
    • 1
  • Jiri Militky
    • 1
  • Zaman Khan
    • 1
  • Syed Qummer Zia Gilani
    • 1
  1. 1.Department of Material EngineeringTechnical University of LiberecLiberecCzech Republic

Personalised recommendations