Skip to main content
Log in

Leveraging the Antibacterial Properties of Knitted Fabrics by Admixture of Polyester-Silver Nanocomposite Fibres

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Leveraging the antibacterial properties of polyester-cotton knitted fabrics has been attempted in this research by admixture of small proportion of polyester-silver nanocomposite fibres. Polyester-cotton (50:50) yarns were spun by mixing 10, 20 and 30 % (wt.%) polyester-silver nanocomposite fibres with normal polyester fibres so that overall proportion of polyester fibre becomes 50 %. The proportion of cotton fibre was constant (50 %) in all the yarns. Three parameters, namely blend proportion (wt.%) of nanocomposite fibres, yarn count and knitting machine gauge were varied, each at three levels, for producing 27 knitted fabrics. Polyester-cotton knitted fabrics prepared from polyester-silver nanocomposite fibres showed equally good antibacterial activity (65-99 %) against both S. aureus and E. coli bacteria. Antibacterial properties were enhanced with the increase in the proportion of polyester-silver nanocomposite fibres, yarn coarseness and increased compactness of knitted fabrics. Yarn count and blend proportion of nanocomposite fibre were found to have very dominant influence in determining the antibacterial properties of knitted fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zanoaga and F. Tanasa, Chem. J. Mold., 9, 14 (2014).

    Article  CAS  Google Scholar 

  2. U. Wollina, M. B. Abdel-Naser, and S. Verma in “Skin Physiology and Textiles-Consideration of Basic Interactions”, (U.-C. Hipler and P. Elsner Eds.), pp.1–16, Curr. Probl. Dermatol., KARGER, Basel, 2006.

  3. U. Fluhr and P. Elsner in “A New Silver-Loaded Cellulosic Fiber with Antifungal and Antibacterial Properties” (U.-C. Hipler and P. Elsner Eds.), pp.165–178, Curr. Probl. Dermatol., KARGER, Basel, 2006.

  4. D. Gupta and S. Bhaumik, Ind. J. Fib. Tex. Res., 32, 254 (2007).

    CAS  Google Scholar 

  5. A. I. Wasif and S. K. Laga, AUTEX Res. J., 9, 4 (2009).

    Google Scholar 

  6. X. Ren, H. B. Kocer, L. Kou, S. D. Worley, R. M. Broughton, Y. M. Tzou, and T. S. Huang, J. Appl. Polym. Sci., 2756, 109 (2008).

    Google Scholar 

  7. K. E. Duckett, B. C. Goswami, and H. H. Ramey, Text. Res. J., 49, 262 (1979).

    Article  Google Scholar 

  8. V. K. Kothari, S. M. Ishtiaque, and V. G. Ogale, Ind. J. Fib. Tex. Res., 29, 30 (2004).

    CAS  Google Scholar 

  9. P. S. Schabes-Retchkiman, G. Canizal, R. Herrera-Becerra, C. Zorrilla, H. B. Liu, and J. A. Ascencio, Opt. Mater., 29, 95 (2006).

    Article  CAS  Google Scholar 

  10. H. Gu, P. L. Ho, E. Tong, L. Wang, and B. Xu, Nano Lett., 3, 1261 (2003).

    Article  CAS  Google Scholar 

  11. Z. Ahmad, R. Pandey, S. Sharma, and G. K. Khuller, Ind. J. Chest. Dis. Allied. Sci., 48, 171 (2005).

    Google Scholar 

  12. P. Gong, H. Li, X. He, K. Wang, J. Hu, W. Tan, S. Zhang, and X. Yang, Nanotechnology, 18, 285604 (2007).

    Article  CAS  Google Scholar 

  13. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman, Nanotechnology, 16, 2346 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho, Nanomed. Nanotechnol. Biol. Med., 3, 95 (2007).

    Article  CAS  Google Scholar 

  15. M. Gouda, J. Ind. Text., 41, 222 (2012).

    Article  CAS  Google Scholar 

  16. B. Nowack, H. F. Krug, and M. Height, Environ. Sci. Technol., 45, 1177 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. S. Y. Yeo and S. H. Jeong, Polym. Int., 52, 1053 (2003).

    Article  CAS  Google Scholar 

  18. F. Zhang, X. Wu, and Y. Chen, Fiber. Polym., 10, 496 (2009).

    Article  CAS  Google Scholar 

  19. M. D. Teli and J. Sheikh, Fiber. Polym., 13, 1280 (2012).

    Article  CAS  Google Scholar 

  20. Y. Gao and R. Cranston, Text. Res. J., 78, 60 (2008).

    Article  CAS  Google Scholar 

  21. R. Purwar, R. Mishra, and M. Joshi, AATCC Rev., 8, 35 (2008).

    Google Scholar 

  22. B. Mahltig, D. Fiedler, and H. Bottcher, J. Sol-Gel Sci. Technol., 32, 219 (2004).

    Article  CAS  Google Scholar 

  23. I. Perelshtein, G. Applerot, N. Perkas, G. Guibert, S. Mikhailov, and A. Gedanken, Nanotechnology, 19, 1 (2008).

    Article  CAS  Google Scholar 

  24. H. J. Lee and S. H. Jeong, Text. Res. J., 74, 442 (2004).

    Article  CAS  Google Scholar 

  25. X.-C. Huang, L. Hong, and Y.-Y. Chen, Abstracts of the Fibre Society Symposium, 967 (2009).

    Google Scholar 

  26. M. Gorensek and P. Recelj, Text. Res. J., 77, 138 (2007).

    Article  CAS  Google Scholar 

  27. M. Gorensek, M. Gorjanc, V. Bukosek, J. Kovac, P. Jovancic, and D. Mihailovic, Text. Res. J., 80, 253 (2010).

    Article  CAS  Google Scholar 

  28. P. Gupta, M. Bajpai, and S. K. Bajpai, J. Cott. Sci., 12, 280 (2008).

    CAS  Google Scholar 

  29. M. L. Gulrajani, D. Gupta, S. Periyasamy, and S. G. Muthu, J. Appl. Poly. Sci., 108, 614 (2008).

    Article  CAS  Google Scholar 

  30. M. Joshi and R. Purwar, AATCC Rev., 4, 22 (2004).

    Google Scholar 

  31. H. Wang, Q. Wei, and W. Gao, AATCC Rev., 9, 34 (2009).

    CAS  Google Scholar 

  32. T. Walser, E. Demou, D. J. Lang, and S. Hellweg, Environ. Sci. Technol., 45, 4570 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Geranio, M. Heuberger, and B. Nowack, Environ. Sci. Technol., 43, 8113 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. T. M. Benn and P. Westerhoff, Environ. Sci. Technol., 42, 4133 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. H. J. Lee, S. Y. Yeo, and S. H. Jeong, J. Mater. Sci., 38, 2199 (2003).

    Article  CAS  Google Scholar 

  36. A. Timin and E. Rumyantsev, BioNanoScience, 3, 415 (2013).

    Article  Google Scholar 

  37. M. Montazer, A. Shamei, and F. Alimohammadi, Mater. Sci. Eng. C., 38, 170 (2014).

    Article  CAS  Google Scholar 

  38. Q. Shi, N. Vitchuli, J. Nowak, J. Noar, J. M. Caldwell, F. Breidt, M. Bourham, M. McCord, and X. Zhang, J. Mater. Chem., 21, 10330 (2011).

    Article  CAS  Google Scholar 

  39. S. H. Jeong, S. Y. Yeo, and S. C. Yi, J. Mater. Sci., 40, 5407 (2005).

    Article  CAS  Google Scholar 

  40. A. Majumdar, B. S. Butola, and S. Thakur, Mater. Sci. Eng. C., 54, 26 (2015).

    Article  CAS  Google Scholar 

  41. A. D. Erem, G. Ozcan, M. Skrifvars, and M. Cakmak, Fiber. Polym., 14, 1415 (2013).

    Article  CAS  Google Scholar 

  42. L. Lin, W. Gong, and S. Wang, J. Text. Inst., 102, 419 (2011).

    Article  CAS  Google Scholar 

  43. C. Chen, H. Zhang, X. X. Zhang, and X. C. Wang, J. Text. Inst., 101, 128 (2010).

    Article  CAS  Google Scholar 

  44. Q. Xu, Y. Wu, and Y. Zhang, Fiber. Polym., 17, 1782 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Khude.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khude, P., Majumdar, A. & Butola, B.S. Leveraging the Antibacterial Properties of Knitted Fabrics by Admixture of Polyester-Silver Nanocomposite Fibres. Fibers Polym 19, 1403–1410 (2018). https://doi.org/10.1007/s12221-018-7889-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7889-5

Keywords

Navigation