Fibers and Polymers

, Volume 19, Issue 3, pp 524–530 | Cite as

Coating Cellulosic Materials with Graphene for Selective Absorption of Oils and Organic Solvents from Water

  • Damian Łukawski
  • Filip Lisiecki
  • Alina Dudkowiak


Development of efficient and eco-friendly sorbents used for selective oil removal after oil spill disasters is one of the main topics in environmental science. By using various cellulosic materials coated with graphene flakes, using simple, one-step dip-coating method, it was possible to manufacture environmentally friendly, selective oil sorbents. The cellulosic materials of different yarn size and distribution such as cotton roving, gauze, fabric, and cellulosic wipe and Whatman filter paper were chosen. The scanning electron microscopy showed that simple dip-coating of any cellulosic materials into graphene dispersion creates a uniformly distributed nanomaterial coating. The wetting tests confirmed that the coating endowed cellulosic materials with hydrophobic properties, regardless of their initial yarn distribution and purity. Moreover, the water repellent samples were simultaneously highly sorptive towards oils and organic solvents. Sorption tests performed for a representative group of organic solvents and oils have shown that depending on cellulosic material the oil sorption capacity varied from 4 g/g to 33 g/g for cotton fabric and roving, respectively. Moreover, the absorption selectivity of chloroform versus water exceeded 90 % for each sample and reached over 99 % for the graphene coated cotton roving and gauze. Finally, the recyclability tests have shown that graphene coated materials are less fragile for reuse than naturally hydrophobic sorbents.


Graphene Cellulose Cotton Hydrophobic properties Oil sorbent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12221_2018_7879_MOESM1_ESM.pdf (29.7 mb)
Coating cellulosic materials with graphene for selective absorption of oils and organic solvents from water


  1. 1.
    S. Gupta and N.-H. Tai, J. Mater. Chem. A, 4, 1550 (2016).CrossRefGoogle Scholar
  2. 2.
    M. J. Nine, M. A. Cole, D. N. H. Tran, and D. Losic, J. Mater. Chem. A, 3, 12580 (2015).CrossRefGoogle Scholar
  3. 3.
    C. Lee and S. Baik, Carbon, 48, 2192 (2010).CrossRefGoogle Scholar
  4. 4.
    C. H. Lee, N. Johnson, J. Drelich, and Y. K. Yap, Carbon, 49, 669 (2011).CrossRefGoogle Scholar
  5. 5.
    X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, and D. Wu, Adv. Mater., 22, 617 (2010).CrossRefGoogle Scholar
  6. 6.
    D. D. Nguyen, N.-H. Tai, S.-B. Lee, and W.-S. Kuo, Energy Environ. Sci., 5, 7908 (2012).CrossRefGoogle Scholar
  7. 7.
    H. Ha, K. Shanmuganathan, and C. J. Ellison, ACS Appl. Mater. Interfaces, 7, 6220 (2015).CrossRefGoogle Scholar
  8. 8.
    X. Dong, J. Chen, Y. Ma, J. Wang, M. B. Chan-Park, X. Liu, L. Wang, W. Huang, and P. Chen, Chem. Commun., 48, 10660 (2012).CrossRefGoogle Scholar
  9. 9.
    H. Zhu, D. Chen, N. Li, Q. Xu, H. Li, J. He, and J. Lu, Adv. Funct. Mater., 25, 597 (2015).CrossRefGoogle Scholar
  10. 10.
    Y. Yu, H. Chen, Y. Liu, V. S. J. Craig, L. H. Li, Y. Chen, and A. Tricoli, Polymer, 55, 5616 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Q. Zhao, J. Q. Huang, Q. Zhang, W. L. Luo, and F. Wei, Appl. Clay Sci., 53, 1 (2011).CrossRefGoogle Scholar
  12. 12.
    Y. Shang, Y. Si, A. Raza, L. Yang, X. Mao, B. Ding, and J. Yu, Nanoscale, 4, 7847 (2012).CrossRefGoogle Scholar
  13. 13.
    X. L. Yao, W. J. Yu, X. Xu, F. Chen, and Q. Fu, Nanoscale, 7, 3959 (2015).CrossRefGoogle Scholar
  14. 14.
    H. M. Choi and R. M. Cloud, Environ. Sci. Technol., 26, 772 (1992).CrossRefGoogle Scholar
  15. 15.
    S. Cao, T. Dong, G. Xu, and F. Wang, J. Nat. Fibers, 5, 727 (2017).CrossRefGoogle Scholar
  16. 16.
    V. Singh, S. Jinka, K. Hake, S. Parameswaran, R. J. Kendall, and S. Ramkumar, Ind. Eng. Chem. Res., 53, 11954 (2014).CrossRefGoogle Scholar
  17. 17.
    F. Liu, M. Ma, D. Zang, Z. Gao, and C. Wang, Carbohydr. Polym., 103, 480 (2014).CrossRefGoogle Scholar
  18. 18.
    J. Li, L. Yan, Y. Zhao, F. Zha, Q. Wang, and Z. Lei, Phys. Chem. Chem. Phys., 17, 6451 (2015).CrossRefGoogle Scholar
  19. 19.
    J. H. Lee, D. H. Kim, and Y. D. Kim, J. Ind. Eng. Chem., 35, 140 (2016).CrossRefGoogle Scholar
  20. 20.
    B. Ge, Z. Zhang, X. Zhu, X. Men, X. Zhou, and Q. Xue, Compos. Sci. Technol., 102, 100 (2014).CrossRefGoogle Scholar
  21. 21.
    N. T. Hoai, N. N. Sang, and T. D. Hoang, Mater. Sci. Eng. B, 216, 1 (2016).Google Scholar
  22. 22.
    B. Cortese, D. Caschera, F. Federici, G. M. Ingo, and G. Gigli, J. Mater. Chem. A, 2, 6781 (2014).CrossRefGoogle Scholar
  23. 23.
    H. X. Sun, Z. Q. Zhu, W. D. Liang, B. P. Yang, X. J. Qin, X. H. Zhao, C. J. Pei, P. Q. La, and A. Li, RSC Adv., 4, 30587 (2014).CrossRefGoogle Scholar
  24. 24.
    A. F. Stalder, G. Kulik, D. Sage, L. Barbieri, and P. Hoffmann, Colloids Surf. A, 286, 92 (2006).CrossRefGoogle Scholar
  25. 25.
    R. Alqus, S. J. Eichhorn, and R. A. Bryce, Biomacromolecules, 16, 1771 (2015).CrossRefGoogle Scholar
  26. 26.
    R. N. Wenzel, J. Psychosom. Res., 53, 1466 (1949).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Damian Łukawski
    • 1
  • Filip Lisiecki
    • 2
  • Alina Dudkowiak
    • 1
  1. 1.Faculty of Technical PhysicsPoznan University of TechnologyPoznanPoland
  2. 2.Institute of Molecular PhysicsPolish Academy of SciencesPoznanPoland

Personalised recommendations