Advertisement

Fibers and Polymers

, Volume 19, Issue 3, pp 507–514 | Cite as

Effect of Sericin Content on the Structural Characteristics and Properties of Electro-spun Regenerated Silk

  • Jae Sang Ko
  • Chang Seok Ki
  • In Chul Um
Article
  • 77 Downloads

Abstract

Electro-spun silk web has attracted attention for biomedical applications because of its excellent bio-compatibility and facile fabrication method. Because biomedical applications require various performances of silk web, many studies have been conducted on the effect of the variables associated with their preparation on the structure and properties of silk web. In the present study, the effect of residual sericin content on the morphology, structural characteristics, and properties of electrospun regenerated silk web was examined. The regenerated silk without sericin (i.e., silk with 100 wt% fibroin) did not show good electro-spinnability. However, the electro-spinnability improved remarkably above a sericin content of 0.6 wt%. The crystallinity index of the electro-spun silk increased at 0.6 wt% sericin content and decreased above 8.2 wt% sericin. The mechanical properties of the electro-spun silk webs showed a similar trend as their crystallinity indices. The breaking strength and elongation improved significantly at 0.6 wt% sericin content and both parameters gradually decreased above this value. The thermal stability of the silk web decreased slightly upon increasing the sericin content.

Keywords

Silk web Sericin Electro-spinning Crystallinity Strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Sakabe, H. Ito, T. Miyamoto, Y. Noishiki, and W. S. Ha, Sen-i Gakkaishi, 45, 487 (1989).CrossRefGoogle Scholar
  2. 2.
    N. Minoura, S. I. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, J. Biomed. Mater. Res., 29, 1215 (1995).CrossRefGoogle Scholar
  3. 3.
    M. Santin, A. Motta, G. Freddi, and M. Cannas, J. Biomed. Mater. Res., 46, 382 (1999).CrossRefGoogle Scholar
  4. 4.
    T. Arai, G. Freddi, R. Innocenti, and M. Tsukada, J. Appl. Polym. Sci., 91, 2383 (2004).CrossRefGoogle Scholar
  5. 5.
    B. Zuo, L. Dai, and Z. Wu, J. Mater. Sci., 41, 3357 (2006).CrossRefGoogle Scholar
  6. 6.
    H. J. Cho, Y. J. Yoo, J. W. Kim, Y. H. Park, D. G. Bae, and I. C. Um, Polym. Degrad. Stab., 97, 1060 (2012).CrossRefGoogle Scholar
  7. 7.
    J. Kim, C. H. Kim, C. H. Park, J. N. Seo, H. Kweon, S. W. Kang, and K. G. Lee, Wound Repair Regen., 18, 132 (2010).CrossRefGoogle Scholar
  8. 8.
    C. Li, C. Vepari, H. J. Jin, H. J. Kim, and D. L. Kaplan, Biomaterials, 27, 3115 (2006).CrossRefGoogle Scholar
  9. 9.
    H. Y. Kweon, K. G. Lee, C. H. Chae, C. Balazsi, S. K. Min, J. Y. Kim, J. Y. Choi, and S. G. Kim, J. Oral Maxillofac. Surg., 69, 1578 (2011).CrossRefGoogle Scholar
  10. 10.
    S. W. Lee, I. C. Um, S. G. Kim, and M. S. Cha, Maxillofac. Plast. Reconstr. Surg., 37, 32 (2015).CrossRefGoogle Scholar
  11. 11.
    K. H. Kim, L. Jeong, H. N. Park, S. Y. Shin, W. H. Park, S. C. Lee, T. I. Kim, Y. J. Park, Y. J. Seol, Y. M. Lee, Y. Ku, I. C. Rhyu, S. B. Han, and C. P. Chung, J. Biotechnol., 120, 327 (2005).CrossRefGoogle Scholar
  12. 12.
    S. Y. Park, C. S. Ki, Y. H. Park, K. G. Lee, S. W. Kang, H. Y. Kweon, and H. J. Kim, J. Tissue Eng. Regen. Med., 9, 66 (2015).CrossRefGoogle Scholar
  13. 13.
    I. C. Um, H. Y. Kweon, Y. H. Park, and S. Hudson, Int. J. Biol. Macromol., 29, 91 (2001).CrossRefGoogle Scholar
  14. 14.
    B. D. Lawrence, J. K. Marchant, M. A. Pindrus, F. G. Omenetto, and D. L. Kaplan, Biomaterials, 30, 1299 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. N. Jo and I. C. Um, Int. J. Biol. Macromol., 78, 287 (2015).CrossRefGoogle Scholar
  16. 16.
    I. C. Um, C. S. Ki, H. Kweon, K. G. Lee, D. W. Ihm, and Y. H. Park, Int. J. Biol. Macromol., 34, 107 (2004).CrossRefGoogle Scholar
  17. 17.
    D. E. Chung and I. C. Um, Fiber. Polym., 15, 153 (2014).CrossRefGoogle Scholar
  18. 18.
    S. W. Ha, A. E. Tonelli, and S. M. Hudson, Biomacromolecules, 6, 1722 (2005).CrossRefGoogle Scholar
  19. 19.
    B. K. Park and I. C. Um, Fiber. Polym., 16, 1935 (2015).CrossRefGoogle Scholar
  20. 20.
    H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, Biomacromolecules, 3, 1233 (2002).CrossRefGoogle Scholar
  21. 21.
    S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Polym. J., 35, 185 (2003).CrossRefGoogle Scholar
  22. 22.
    B. K. Park and I. C. Um, Int. J. Biol. Macromol., 95, 8 (2017).CrossRefGoogle Scholar
  23. 23.
    H. H. Kim, D. W. Song, M. J. Kim, S. J. Ryu, I. C. Um, C. S. Ki, and Y. H. Park, Polymer, 90, 26 (2016).CrossRefGoogle Scholar
  24. 24.
    D. Su, L. Jiang, X. Chen, J. Dong, and Z. Shao, ACS Appl. Mater. Interfaces, 8, 9619 (2016).CrossRefGoogle Scholar
  25. 25.
    M. J. Jang and I. C. Um, Eur. Polym. J., 93, 761 (2017).CrossRefGoogle Scholar
  26. 26.
    M. K. Kim, J. Y. Lee, H. Oh, D. W. Song, H. W. Kwak, H. Yun, I. C. Um, Y. H. Park, and K. H. Lee, Int. J. Biol. Macromol., 79, 988 (2015).CrossRefGoogle Scholar
  27. 27.
    J. Nam and Y. H. Park, J. Appl. Polym. Sci., 81, 3008 (2001).CrossRefGoogle Scholar
  28. 28.
    J. H. Lee, Y. S. Bae, S. J. Kim, D. W. Song, Y. H. Park, D. G. Bae, J. H. Choi, and I. C. Um, Int. J. Biol. Macromol., 106, 39 (2018).CrossRefGoogle Scholar
  29. 29.
    C. Chen, C. Chuanbao, M. Xilan, T. Yin, and Z. Hesun, Polymer, 47, 6322 (2006).CrossRefGoogle Scholar
  30. 30.
    B. K. Park and I. C. Um, Int. J. Biol. Macromol., 106, 1166 (2018).CrossRefGoogle Scholar
  31. 31.
    S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Polymer, 45, 3701 (2004).CrossRefGoogle Scholar
  32. 32.
    J. S. Ko, K. Yoon, C. S. Ki, H. J. Kim, D. G. Bae, K. H. Lee, Y. H. Park, and I. C. Um, Int. J. Biol. Macromol., 55, 161 (2013).CrossRefGoogle Scholar
  33. 33.
    K. Yoon, H. N. Lee, C. S. Ki, D. Fang, B. S. Hsiao, B. Chu, and I. C. Um, Int. J. Biol. Macromol., 61, 50 (2013).CrossRefGoogle Scholar
  34. 34.
    H. J. Kim and I. C. Um, Korea-Aust. Rheol. J., 26, 119 (2014).CrossRefGoogle Scholar
  35. 35.
    F. Zhang, B. Q. Zuo, and L. Bai, J. Mater. Sci., 44, 5682 (2009).CrossRefGoogle Scholar
  36. 36.
    H. Oh, J. Y. Lee, M. K. Kim, I. C. Um, and K. H. Lee, Int. J. Biol. Macromol., 48, 32 (2011).CrossRefGoogle Scholar
  37. 37.
    S. C. Kundu, B. C. Dash, R. Dash, and D. L. Kaplan, Prog. Polym. Sci., 33, 998 (2008).CrossRefGoogle Scholar
  38. 38.
    D. E. Chung, J. H. Lee, H. Kweon, K. G. Lee, and I. C. Um, Int. J. Indust. Entomol., 30, 81 (2015).CrossRefGoogle Scholar
  39. 39.
    J. S. Kim, T. H. Kim, and K. H. Lee, Text. Sci. Eng., 53, 273 (2016).CrossRefGoogle Scholar
  40. 40.
    C. S. Ki, J. W. Kim, H. J. Oh, K. H. Lee, and Y. H. Park, Int. J. Biol. Macromol., 41, 346 (2007).CrossRefGoogle Scholar
  41. 41.
    C. S. Ki, I. C. Um, and Y. H. Park, Polymer, 50, 4618 (2009).CrossRefGoogle Scholar
  42. 42.
    H. J. Kim and I. C. Um, Int. J. Biol. Macromol., 67, 387 (2014).CrossRefGoogle Scholar
  43. 43.
    J. H. Lee, D. W. Song, Y. H. Park, and I. C. Um, Int. J. Biol. Macromol., 89, 273 (2016).CrossRefGoogle Scholar
  44. 44.
    B. K. Park and I. C. Um, Text. Sci. Eng., 54, 224 (2017).Google Scholar
  45. 45.
    N. V. Bhat and G. S. Nadiger, J. Appl. Polym. Sci., 25, 921 (1980).CrossRefGoogle Scholar
  46. 46.
    H. J. Kim, M. K. Kim, K. H. Lee, S. K. Nho, M. S. Han, and I. C. Um, Int. J. Biol. Macromol., 104, 294 (2017).CrossRefGoogle Scholar
  47. 47.
    X. Zhu, W. Cui, X. Li, and Y. Jin, Biomacromolecules, 9, 1795 (2008).CrossRefGoogle Scholar
  48. 48.
    N. Amiraliyan, M. Nouri, and M. H. Kish, J. Appl. Polym. Sci., 113, 226 (2009).CrossRefGoogle Scholar
  49. 49.
    I. C. Um, H. Y. Kweon, K. G. Lee, and Y. H. Park, Int. J. Biol. Macromol., 33, 203 (2003).CrossRefGoogle Scholar
  50. 50.
    M. Tsukada, Y. Gotoh, M. Nagura, N. Minoura, N. Kasai, and G. Freddi, J. Polym. Sci. B Polym. Phys., 32, 961 (1994).CrossRefGoogle Scholar
  51. 51.
    H. Yamada, H. Nakao, Y. Takasu, and K. Tsubouchi, Mater. Sci. Eng., 14, 41 (2001).CrossRefGoogle Scholar
  52. 52.
    Y. N. Jo, B. D. Park, and I. C. Um, Int. J. Biol. Macromol., 81, 936 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bio-fibers and Materials ScienceKyungpook National UniversityDaeguKorea
  2. 2.Department of Biosystems and Biomaterials Science and EngineeringSeoul National UniversitySeoulKorea
  3. 3.Institute of Agricultural Science and TechnologyKyungpook National UniversityDaeguKorea

Personalised recommendations