Advertisement

Fibers and Polymers

, Volume 19, Issue 3, pp 660–669 | Cite as

Microencapsulation of Three-Component Thermochromic System for Reversible Color Change and Thermal Energy Storage

  • M. Selda Tözüm
  • Sennur Alay Aksoy
  • Cemil Alkan
Article

Abstract

In this study, poly(methyl methacrylate)/thermochromic system (PMMA/TS) and poly(methyl methacrylate-comethacrylic acid)/thermochromic system (P(MMA-co-MA)/TS) microcapsules were prepared by using emulsion polymerization method. The thermochromic system was consisting of crystal violet lactone (CVL) as a leuco dye, bisphenol-A (BPA) as a color developer, and 1-tetradecanol (TD) as a solvent. Microcapsules with different ratio of core/shell were synthesized to examine the effect of core/shell ratio on the properties of microcapsules. Phase transition temperatures and enthalpies, morphology, and particle size distributions of the microcapsules were analyzed using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and particle size analyzer instruments, respectively. FT-IR spectroscopy was used to prove the presence of the thermochromic system in the microcapsules. UV-Vis absorption bands of the thermochromic system (TS) and microencapsulated thermochromic system (MTS) at both below and above the melting temperature of the solvent were obtained by using a UV-Vis spectrophotometer. The visible color change depending on temperature was monitored for each microcapsule individually by using a digital camera. Spherical morphology and unimodal particle size distribution of the microcapsules were determined by means of SEM photographs and particle size distribution curve analysis. The mean particle sizes of the produced microcapsules varied in a range of 16.0-35.2 μm. The digital camera photographs and the UV-Vis absorbance curves proved that color changed between dark blue and light blue depending upon the temperature change. Meanwhile, the produced microcapsules were proven for an excellent heat storage capacity for thermal energy storage owing to phase changing of the tetradecanol solvent used in the thermochromic system. The melting enthalpy of the microcapsules ranged from 145.5 J/g to 193.4 J/g.

Keywords

Microcapsules Thermochromic system Leuco dye PMMA Thermal properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Christie and I. D. Bryant, Color. Technol., 121, 187 (2005).CrossRefGoogle Scholar
  2. 2.
    I. Malherbe, R. D. Sanderson, and E. Smit, Polymer, 51, 5037 (2010).CrossRefGoogle Scholar
  3. 3.
    M. A. Chowdhury, B. S. Butola, and M. Joshi, Color. Technol., 129, 232 (2013).CrossRefGoogle Scholar
  4. 4.
    M. A. Chowdhury, M. Joshi, and B. S. Butola, J. Eng. Fiber Fabr., 9, 107 (2014).Google Scholar
  5. 5.
    P. Bamfield and M. G. Hutchings, “Chromic Phenomena-Technological Applications of Colour Chemistry”, 2nd ed., pp.47–58, Royal Society of Chemistry, Cambridge, 2010.Google Scholar
  6. 6.
    W. Ibrahim, Ph.D. Dissertation, Heriot-Watt University, 2012.Google Scholar
  7. 7.
    W. Ogrodnik, Wire J. Int., 41, 150 (2008).Google Scholar
  8. 8.
    A. N. Bourque, Ph.D. Dissertation, Dalhousie University, Halifax, Nova Scotia, 2014.Google Scholar
  9. 9.
    M. Friskovec, R. Kulcar, and K. G. Gunde, Color. Technol., 129, 214 (2013).CrossRefGoogle Scholar
  10. 10.
    R. Kulcar, M. Friskovec, N. Hauptman, A. Vesel, and M. K. Gunde, Dyes Pigment., 86, 271 (2010).CrossRefGoogle Scholar
  11. 11.
    R. M. Kantola, H. Kurunmaki, P. K. Vallittu, and L. V. Lassila, J. Prosthet. Dent., 110, 320 (2013).CrossRefGoogle Scholar
  12. 12.
    R. M. Christie, S. Robertson, and S. Taylor, Colour: Design & Creativity, 1, 1 (2007).Google Scholar
  13. 13.
    O. Panák, M. Držková, R. Svoboda, and M. K. Gunde, J. Therm. Anal. Calorim., 127, 633 (2017).CrossRefGoogle Scholar
  14. 14.
    M. A. White and M. LeBlanc, J. Chem. Educ., 76, 1201 (1999).CrossRefGoogle Scholar
  15. 15.
    K. Basnec, M. Hajzeri, and M. K. Gunde, J. Therm. Anal. Calorim., 127, 55 (2017).CrossRefGoogle Scholar
  16. 16.
    F. Li, Y. Zhao, S. Wang, D. Han, L. Jiang, and Y. Song, J. Appl. Polym. Sci., 112, 269 (2009).CrossRefGoogle Scholar
  17. 17.
    C. Alkan, S. A. Aksoy, and R. A. Anayurt, Text. Res. J., 85, 2051 (2015).CrossRefGoogle Scholar
  18. 18.
    S. Demirbag and S. Alay Aksoy, Fiber. Polym., 17, 408 (2016).CrossRefGoogle Scholar
  19. 19.
    H. Wang, J. Luo, Y. Yang, L. Zhao, G. Song, and G. Tang, Sol. Energy, 139, 591 (2016).CrossRefGoogle Scholar
  20. 20.
    C. Alkan, A. Sari, A. Karaipekli, and O. Uzun, Sol. Energ. Mat. So. C., 93, 143 (2009).CrossRefGoogle Scholar
  21. 21.
    A. Sari, C. Alkan, A. Karaipekli, and O. Uzun, Sol. Energ., 83, 1757 (2009).CrossRefGoogle Scholar
  22. 22.
    S. Alay Aksoy, C. Alkan, M. S. Tözüm, S. Demirbag, R. Altun Anayurt, and Y. Ulcay, J. Text. I., 108, 30 (2017).CrossRefGoogle Scholar
  23. 23.
    S. Alay, C. Alkan, and F. Göde, Thermochim. Acta, 518, 1 (2011).CrossRefGoogle Scholar
  24. 24.
    S. Alay, F. Göde, and C. Alkan, J. Appl. Polym. Sci., 120, 2821 (2011).CrossRefGoogle Scholar
  25. 25.
    H. Zhang and X. Wang, Sol. Energy Mater. Sol. Cells, 93, 1366 (2009).CrossRefGoogle Scholar
  26. 26.
    E. Önder, N. Sarier, and E. Çimen, Thermochim. Acta, 467, 63 (2008).CrossRefGoogle Scholar
  27. 27.
    S. S. Deveci and G. Basal, Colloid. Polym. Sci., 287, 1455 (2009).CrossRefGoogle Scholar
  28. 28.
    K. Sawada and H. Urakawa, Dyes Pigment., 65, 45 (2005).CrossRefGoogle Scholar
  29. 29.
    F. Salaün, E. Devaux, S. Bourbigot, and P. Rumeau, Chem. Eng. J., 155, 457 (2009).CrossRefGoogle Scholar
  30. 30.
    Q. Feng, L. Shen, and D. Li, Appl. Mech. Mater., 184-185, 1124 (2012).CrossRefGoogle Scholar
  31. 31.
    S. Alay, F. Göde, and C. Alkan, Fiber. Polym., 11, 1089 (2010).CrossRefGoogle Scholar
  32. 32.
    A. Sari, C. Alkan, D. Kahraman-Dögüsçü, and A. Biçer, Sol. Energy Mater. Sol. Cells, 126, 42 (2014).CrossRefGoogle Scholar
  33. 33.
    O. Panák, M. Držková, M. Kaplanová, U. Novak, and M. K. Gunde, Dyes Pigment., 136, 382 (2017).CrossRefGoogle Scholar
  34. 34.
    A. Raditoiu, V. Raditoiu, C. A. Nicolae, M. F. Raduly, V. Amariutei, and L. E. Wagner, Dyes Pigment., 134, 69 (2016).CrossRefGoogle Scholar
  35. 35.
    M. S. Tözüm, S. Alay Aksoy, and C. Alkan, “16th International Symposium on the Recent Progress in Textile Technology and Chemistry”, 4-6 May 2017, Bursa, 2017.Google Scholar
  36. 36.
    K. Tanaka, T. Seto, A. Watanabe, and T. Hayashida, Bull. Inst. Chem. Res., Kyoto Univ., 37, 281 (1959).Google Scholar
  37. 37.
    K. Tanaka, T. Seto, and T. Hayashida, Bull. Inst. Chem. Res., Kyoto Univ., 35, 123 (1958).Google Scholar
  38. 38.
    L. Ventola, M. Ramirez, T. Calvet, X. Solans, M. A. Cuevas-Diarte, P. Negrier, D. Mondieig, J. C. van Miltenburg, and H. A. J. Oonk, Chem. Mater., 14, 508 (2002).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • M. Selda Tözüm
    • 1
  • Sennur Alay Aksoy
    • 2
  • Cemil Alkan
    • 3
  1. 1.Textile Engineering DepartmentUşak UniversityUsakTurkey
  2. 2.Textile Engineering DepartmentSüleyman Demirel UniversityIspartaTurkey
  3. 3.Department of ChemistryGaziosmanpaşa UniversityTokatTurkey

Personalised recommendations