Fibers and Polymers

, Volume 19, Issue 3, pp 635–640 | Cite as

Evaluating the Mechanical Behavior of Basalt Fibers/Epoxy Composites Containing Surface-modified CaCO3 Nanoparticles

  • Arezoo Abdi
  • Reza Eslami-Farsani
  • Hamed Khosravi


Polymer matrix composites (PMCs) owing to their outstanding properties such as high strength, low weight, high thermal stability and chemical resistance are broadly utilized in various industries. In the present work, the influence of silanized CaCO3 (S-CaCO3) with 3-aminopropyltrimethoxysilane (3-APTMS) coupling agent at different values (0, 1, 3 and 5 wt.% with respect to the matrix) on the mechanical behavior of basalt fibers (BF)/epoxy composites was examined. BF-reinforced composites were fabricated via hand lay-up technique. Experimental results from three-point bending and tensile tests showed that with the dispersion of 3 wt.% S-CaCO3, flexural strength, flexural modulus, tensile strength and tensile modulus enhanced by 28 %, 35 %, 20 % and 30 %, respectively. Microscopic examinations revealed that the development of the mechanical properties of fibrous composites with the incorporation of modified CaCO3 was related to enhancement in the load transfer between the nanocomposite matrix and BF as well as enhanced mechanical properties of the matrix part.


Polymer matrix composites, Basalt fibers, CaCO3 nanoparticles, Surface modification, Mechanical properties, Microscopic examinations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Sanjay, G. R. Arpitha, and B. Yogesha, Mater. Today: Proceeding, 2, 2959 (2015).CrossRefGoogle Scholar
  2. 2.
    P. K. Mallick, Taylor & Francis Group, LLC, 2007.Google Scholar
  3. 3.
    S. Jambari, M. Y. Yahya, M. Ruslan, and A. M. Jawaid, Fiber. Polym., 18, 563 (2017).CrossRefGoogle Scholar
  4. 4.
    G. Wu, X. Wang, Z. Wu, Z. Dong, and G. Zhang, J. Compos. Mater., 49, 873 (2015).CrossRefGoogle Scholar
  5. 5.
    B. Sun, Z. Niu, L. Zhu, and B. Gu, J. Compos. Mater., 44, 1779 (2010).CrossRefGoogle Scholar
  6. 6.
    B. Wei, H. Cao, and S. Song, Mater. Sci. Eng. A, 527, 4708 (2010).CrossRefGoogle Scholar
  7. 7.
    J. Militky, V. Kovacic, and J. Rubnerova, Eng. Fract. Mech., 69, 1025 (2002).CrossRefGoogle Scholar
  8. 8.
    J. J. Lee, I. Nam, and H. Kim, Fiber. Polym., 18, 140 (2017).CrossRefGoogle Scholar
  9. 9.
    H. Kim, Fiber. Polym., 14, 1311 (2013).CrossRefGoogle Scholar
  10. 10.
    M. A. Shayed, R. D. Hund, and C. Cherif, Fiber. Polym., 15, 2086 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Karahan and A. Godara, J. Reinf. Plast. Compos., 32, 515 (2013).CrossRefGoogle Scholar
  12. 12.
    C. M. Hadden, D. R. Klimek-McDonald, E. J. Pineda, J. A. King, A. M. Reichanadter, I. Miskioglu, S. Gowtham, and G. M. Odegard, Carbon, 95, 100 (2015).CrossRefGoogle Scholar
  13. 13.
    H. Khosravi and R. Eslami-Farsani, J. Reinf. Plast. Compos., 35, 421 (2016).CrossRefGoogle Scholar
  14. 14.
    S. S. Du, F. Li, H. M. Xiao, Y. Q. Li, N. Hu, and S. Y. Fu, Compos. Pt. B-Eng., 99, 407 (2016).CrossRefGoogle Scholar
  15. 15.
    H. Ulus, O. S. Sahin, and A. Avc, Fiber. Polym., 16, 2627 (2015).CrossRefGoogle Scholar
  16. 16.
    H. He, Z. Zhang, J. Wang, and K. Li, Compos. Pt. B-Eng., 45, 919 (2012).CrossRefGoogle Scholar
  17. 17.
    H. He and F. Gao, Polym. Compos., doi:10.1002/pc.23775 (2015).Google Scholar
  18. 18.
    N. H. M. Zulfli, A. AbuBakar, and W. S. Chow, High Perform. Polym., 26, 223 (2014).CrossRefGoogle Scholar
  19. 19.
    C. Xia, S. Q. Shi, and L. Cai, Compos. Pt. B-Eng., 78, 138 (2015).CrossRefGoogle Scholar
  20. 20.
    A. Mirzapour, M. H. Asadollahi, S. Baghshaei, and M. Akbari, Compos. Pt. A-Appl. Sci. Manuf., 63, 159 (2014).CrossRefGoogle Scholar
  21. 21.
    K. Krushnamurty, I. Srikanth, B. Rangababu, S. K. Majee, R. Bauri, and C. Subrahmanyam, Adv. Mater. Lett., 6, 684 (2015).CrossRefGoogle Scholar
  22. 22.
    N. R. R. Anbusagar, K. Palanikumar, R. Vigneswaran, M. Rajmohan, and P. Sengottuvel, Appl. Mech. Mater., 766, 372 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Manjunath, N. Renukappa, and B. Suresha, J. Compos. Mater., 50, 1109 (2016).CrossRefGoogle Scholar
  24. 24.
    M. F. Uddin and C. T. Sun, Compos. Sci. Technol., 68, 1637 (2008).CrossRefGoogle Scholar
  25. 25.
    M. Mozaffari Naiini, M. Ghahari, and M. Sh. Afarani, Particul. Sci. Technol., 33, 456 (2015).CrossRefGoogle Scholar
  26. 26.
    M. Araghi, M. Ghahari, and M. Sh. Afarani, J. Environ. Chem. Eng., 5, 1780 (2017).CrossRefGoogle Scholar
  27. 27.
    H. Khosravi and R. Eslami-Farsani, Polym. Test., 55, 135 (2016).CrossRefGoogle Scholar
  28. 28.
    Z. Yao, M. Xia, L. Ge, T. Chen, H. Li, Y. Ye, and H. Zheng, Fiber. Polym., 15, 1278 (2014).CrossRefGoogle Scholar
  29. 29.
    S. Shan, X. Chen, Z. Xi, X. Yu, X. Qu, and Q. Zhang, High Perform. Polym., 29, 113 (2017).CrossRefGoogle Scholar
  30. 30.
    H. He and F. Gao, J. Macromol. Sci. B, 54, 879 (2015).CrossRefGoogle Scholar
  31. 31.
    A. Shahrabi-Farahani and R. Eslami-Farsani, Fiber. Polym., 18, 965 (2017).CrossRefGoogle Scholar
  32. 32.
    H. Khosravi and R. Eslami-Farsani, J. Comput. Appl. Res. Mech. Eng., 7, 99 (2017).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Arezoo Abdi
    • 1
  • Reza Eslami-Farsani
    • 1
  • Hamed Khosravi
    • 2
  1. 1.Faculty of Materials Science and EngineeringK. N. Toosi University of TechnologyTehranIran
  2. 2.Department of Materials Engineering, Faculty of EngineeringUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations