Skip to main content
Log in

Evaluating the Mechanical Behavior of Basalt Fibers/Epoxy Composites Containing Surface-modified CaCO3 Nanoparticles

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polymer matrix composites (PMCs) owing to their outstanding properties such as high strength, low weight, high thermal stability and chemical resistance are broadly utilized in various industries. In the present work, the influence of silanized CaCO3 (S-CaCO3) with 3-aminopropyltrimethoxysilane (3-APTMS) coupling agent at different values (0, 1, 3 and 5 wt.% with respect to the matrix) on the mechanical behavior of basalt fibers (BF)/epoxy composites was examined. BF-reinforced composites were fabricated via hand lay-up technique. Experimental results from three-point bending and tensile tests showed that with the dispersion of 3 wt.% S-CaCO3, flexural strength, flexural modulus, tensile strength and tensile modulus enhanced by 28 %, 35 %, 20 % and 30 %, respectively. Microscopic examinations revealed that the development of the mechanical properties of fibrous composites with the incorporation of modified CaCO3 was related to enhancement in the load transfer between the nanocomposite matrix and BF as well as enhanced mechanical properties of the matrix part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Sanjay, G. R. Arpitha, and B. Yogesha, Mater. Today: Proceeding, 2, 2959 (2015).

    Article  Google Scholar 

  2. P. K. Mallick, Taylor & Francis Group, LLC, 2007.

  3. S. Jambari, M. Y. Yahya, M. Ruslan, and A. M. Jawaid, Fiber. Polym., 18, 563 (2017).

    Article  CAS  Google Scholar 

  4. G. Wu, X. Wang, Z. Wu, Z. Dong, and G. Zhang, J. Compos. Mater., 49, 873 (2015).

    Article  CAS  Google Scholar 

  5. B. Sun, Z. Niu, L. Zhu, and B. Gu, J. Compos. Mater., 44, 1779 (2010).

    Article  CAS  Google Scholar 

  6. B. Wei, H. Cao, and S. Song, Mater. Sci. Eng. A, 527, 4708 (2010).

    Article  Google Scholar 

  7. J. Militky, V. Kovacic, and J. Rubnerova, Eng. Fract. Mech., 69, 1025 (2002).

    Article  Google Scholar 

  8. J. J. Lee, I. Nam, and H. Kim, Fiber. Polym., 18, 140 (2017).

    Article  CAS  Google Scholar 

  9. H. Kim, Fiber. Polym., 14, 1311 (2013).

    Article  CAS  Google Scholar 

  10. M. A. Shayed, R. D. Hund, and C. Cherif, Fiber. Polym., 15, 2086 (2014).

    Article  CAS  Google Scholar 

  11. M. Karahan and A. Godara, J. Reinf. Plast. Compos., 32, 515 (2013).

    Article  Google Scholar 

  12. C. M. Hadden, D. R. Klimek-McDonald, E. J. Pineda, J. A. King, A. M. Reichanadter, I. Miskioglu, S. Gowtham, and G. M. Odegard, Carbon, 95, 100 (2015).

    Article  CAS  Google Scholar 

  13. H. Khosravi and R. Eslami-Farsani, J. Reinf. Plast. Compos., 35, 421 (2016).

    Article  CAS  Google Scholar 

  14. S. S. Du, F. Li, H. M. Xiao, Y. Q. Li, N. Hu, and S. Y. Fu, Compos. Pt. B-Eng., 99, 407 (2016).

    Article  CAS  Google Scholar 

  15. H. Ulus, O. S. Sahin, and A. Avc, Fiber. Polym., 16, 2627 (2015).

    Article  CAS  Google Scholar 

  16. H. He, Z. Zhang, J. Wang, and K. Li, Compos. Pt. B-Eng., 45, 919 (2012).

    Article  Google Scholar 

  17. H. He and F. Gao, Polym. Compos., doi:10.1002/pc.23775 (2015).

    Google Scholar 

  18. N. H. M. Zulfli, A. AbuBakar, and W. S. Chow, High Perform. Polym., 26, 223 (2014).

    Article  Google Scholar 

  19. C. Xia, S. Q. Shi, and L. Cai, Compos. Pt. B-Eng., 78, 138 (2015).

    Article  CAS  Google Scholar 

  20. A. Mirzapour, M. H. Asadollahi, S. Baghshaei, and M. Akbari, Compos. Pt. A-Appl. Sci. Manuf., 63, 159 (2014).

    Article  CAS  Google Scholar 

  21. K. Krushnamurty, I. Srikanth, B. Rangababu, S. K. Majee, R. Bauri, and C. Subrahmanyam, Adv. Mater. Lett., 6, 684 (2015).

    Article  CAS  Google Scholar 

  22. N. R. R. Anbusagar, K. Palanikumar, R. Vigneswaran, M. Rajmohan, and P. Sengottuvel, Appl. Mech. Mater., 766, 372 (2015).

    Article  Google Scholar 

  23. M. Manjunath, N. Renukappa, and B. Suresha, J. Compos. Mater., 50, 1109 (2016).

    Article  CAS  Google Scholar 

  24. M. F. Uddin and C. T. Sun, Compos. Sci. Technol., 68, 1637 (2008).

    Article  CAS  Google Scholar 

  25. M. Mozaffari Naiini, M. Ghahari, and M. Sh. Afarani, Particul. Sci. Technol., 33, 456 (2015).

    Article  Google Scholar 

  26. M. Araghi, M. Ghahari, and M. Sh. Afarani, J. Environ. Chem. Eng., 5, 1780 (2017).

    Article  CAS  Google Scholar 

  27. H. Khosravi and R. Eslami-Farsani, Polym. Test., 55, 135 (2016).

    Article  CAS  Google Scholar 

  28. Z. Yao, M. Xia, L. Ge, T. Chen, H. Li, Y. Ye, and H. Zheng, Fiber. Polym., 15, 1278 (2014).

    Article  CAS  Google Scholar 

  29. S. Shan, X. Chen, Z. Xi, X. Yu, X. Qu, and Q. Zhang, High Perform. Polym., 29, 113 (2017).

    Article  CAS  Google Scholar 

  30. H. He and F. Gao, J. Macromol. Sci. B, 54, 879 (2015).

    Article  CAS  Google Scholar 

  31. A. Shahrabi-Farahani and R. Eslami-Farsani, Fiber. Polym., 18, 965 (2017).

    Article  Google Scholar 

  32. H. Khosravi and R. Eslami-Farsani, J. Comput. Appl. Res. Mech. Eng., 7, 99 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Eslami-Farsani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, A., Eslami-Farsani, R. & Khosravi, H. Evaluating the Mechanical Behavior of Basalt Fibers/Epoxy Composites Containing Surface-modified CaCO3 Nanoparticles. Fibers Polym 19, 635–640 (2018). https://doi.org/10.1007/s12221-018-7755-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7755-x

Keywords

Navigation