Fibers and Polymers

, Volume 19, Issue 3, pp 489–497 | Cite as

Fabrication and Characterisation of Functionalised Superparamagnetic Bacterial Nanocellulose Using Ultrasonic-Assisted In Situ Synthesis

  • Naiyasit Yingkamhaeng
  • Ittinet Intapan
  • Prakit Sukyai


Ultrasonic-assisted in situ synthesis was performed using bacterial nanocellulose (BNC) and magnetite nanoparticles (Fe3O4 NPs) to synthesise superparamagnetic membranes as BNC/Fe3O4 nanocomposite films (BNC/Fe3O4 NCFs). Vibrating sample magnetometry of these BNC/Fe3O4 NCFs exhibited superparamagnetic properties with high saturation magnetisation at 40.57 emu g-1. Morphology of BNC/Fe3O4 NCFs was studied by field-emission scanning electron microscopy. Results showed Fe3O4 NPs with diameter 30 to 50 nm trapped in a BNC structure. Fourier transform infrared spectroscopy analysis confirmed the incorporation of BNC and Fe3O4 NPs. Thermal properties of the nanocomposite films increased with Fe3O4 NPs in the BNC structure compared with native BNC. Surface wettability of BNC/Fe3O4 NCFs was determined by contact angle and revealed hydrophobic properties. Results showed that ultrasonic-assisted in situ synthesis of superparamagnetic BNC/Fe3O4 NCFs is an important property when utilising BNC/Fe3O4 NCFs with a hydrophobic nonpolar polymeric matrix in electronic device applications.


Bacterial nanocellulose Magnetite nanoparticles In situ synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, Angew Chem. Int. Ed. Engl., 44, 3358 (2005).CrossRefGoogle Scholar
  2. 2.
    W. K. Czaja, D. J. Young, M. Kawecki, and R. M. Brown, Jr., Biomacromolecules, 8, 1 (2007).CrossRefGoogle Scholar
  3. 3.
    N. Shah, M. Ul-Islam, W. A. Khattak, and J. K. Park, Carbohydr. Polym., 98, 1585 (2013).CrossRefGoogle Scholar
  4. 4.
    S. H. Yoon, H. J. Jin, M. C. Kook, and Y. R. Pyun, Biomacromolecules, 7, 1280 (2006).CrossRefGoogle Scholar
  5. 5.
    R. J. B. Pinto, M. C. Neves, C. P. Neto, and T. Trindade, “Composites of Cellulose and Metal Nanoparticles”, 2012.CrossRefGoogle Scholar
  6. 6.
    S. Liang, Y. Wang, J. Yu, C. Zhang, J. Xia, and D. Yin, J. Mater. Sci.: Mater. Med., 18, 2297 (2007).Google Scholar
  7. 7.
    L. Cabrera, S. Gutiérrez, P. Herrasti, and D. Reyman, Physics Procedia, 3, 89 (2010).CrossRefGoogle Scholar
  8. 8.
    F. J. Yue, S. Wang, L. Lin, F. M. Zhang, C. H. Li, J. L. Zuo, Y. W. Du, and D. Wu, J. Phys. D: Appl. Phys., 44, 025001 (2011).CrossRefGoogle Scholar
  9. 9.
    J. K. Oh and J. M. Park, Prog. Polym. Sci., 36, 168 (2011).CrossRefGoogle Scholar
  10. 10.
    Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys., 36, R167 (2003).CrossRefGoogle Scholar
  11. 11.
    B. Y. Wang, Q. F. Wei, and S. L. Qu, Int. J. Electrochem. Sci., 8, 3786 (2013).Google Scholar
  12. 12.
    M. Mascolo, Y. Pei, and T. Ring, Materials, 6, 5549 (2013).CrossRefGoogle Scholar
  13. 13.
    W. Wu, Q. G. He, and C. Z. Jiang, Nanoscale Res. Lett., 3, 397 (2008).CrossRefGoogle Scholar
  14. 14.
    R. Ianos, A. Taculescu, C. Pacurariu, and I. Lazau, J. Am. Ceram. Soc., 95, 2236 (2012).CrossRefGoogle Scholar
  15. 15.
    F. Yazdani and M. Seddigh, Mater. Chem. Phys., 184, 318 (2016).CrossRefGoogle Scholar
  16. 16.
    W. Zhang, S. Y. Chen, W. L. Hu, B. H. Zhou, Z. H. Yang, N. Yin, and H. P. Wang, Carbohydr. Polym., 86, 1760 (2011).CrossRefGoogle Scholar
  17. 17.
    C. Katepetch, R. Rujiravanit, and H. Tamura, Cellulose, 20, 1275 (2013).CrossRefGoogle Scholar
  18. 18.
    Y. Zheng, J. X. Yang, W. L. Zheng, X. Wang, C. Xiang, L. Tang, W. Zhang, S. Y. Chen, and H. P. Wang, Mater. Sci. Eng. C, Mater. Biol. Appl., 33, 2407 (2013).CrossRefGoogle Scholar
  19. 19.
    C. Katepetch and R. Rujiravanit, Carbohydr. Polym., 86, 162 (2011).CrossRefGoogle Scholar
  20. 20.
    H. Zhu, Z. Fang, C. Preston, Y. Li, and L. Hu, Energy & Environ. Sci., 7, 269 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Deng, R. Huang, M. Zhou, F. Chen, and Q. Fu, Carbohydr. Polym., 154, 129 (2016).CrossRefGoogle Scholar
  22. 22.
    L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).CrossRefGoogle Scholar
  23. 23.
    J. A. Marins, B. G. Soares, H. S. Barud, and S. J. L. Ribeiro, Mater. Sci. Eng. C-Mater. Biol. Appl., 33, 3994 (2013).CrossRefGoogle Scholar
  24. 24.
    Y. Hu and J. M. Catchmark, Biomacromolecules, 11, 1727 (2010).CrossRefGoogle Scholar
  25. 25.
    E. E. Brown and M. P. G. Laborie, Biomacromolecules, 9, 3427 (2008).CrossRefGoogle Scholar
  26. 26.
    W.-H. Khoh and J.-D. Hong, Colloids Surf. A Physicochem. Eng. Asp., 436, 104 (2013).CrossRefGoogle Scholar
  27. 27.
    H. Zhu, S. Jia, T. Wan, Y. Jia, H. Yang, J. Li, L. Yan, and C. Zhong, Carbohydr. Polym., 86, 1558 (2011).CrossRefGoogle Scholar
  28. 28.
    E. Sourty, D. H. Ryan, and R. H. Marchessault, Cellulose, 5, 5 (1998).CrossRefGoogle Scholar
  29. 29.
    M. Park, J. Cheng, J. Choi, J. Kim, and J. Hyun, Colloid Surf. B-Biointerfaces., 102, 238 (2013).CrossRefGoogle Scholar
  30. 30.
    C. Castro, R. Zuluaga, J.-L. Putaux, G. Caro, I. Mondragon, and P. Gañán, Carbohydr. Polym., 84, 96 (2011).CrossRefGoogle Scholar
  31. 31.
    A. Ashori, S. Sheykhnazari, T. Tabarsa, A. Shakeri, and M. Golalipour, Carbohydr. Polym., 90, 413 (2012).CrossRefGoogle Scholar
  32. 32.
    B. V. Mohite and S. V. Patil, Carbohydr. Polym., 106, 132 (2014).CrossRefGoogle Scholar
  33. 33.
    A. Sedighi, M. Montazer, and N. Samadi, Carbohydr. Polym., 110, 489 (2014).CrossRefGoogle Scholar
  34. 34.
    J. S. Zhou, H. H. Song, L. L. Ma, and X. H. Chen, RSC Advances, 1, 782 (2011).CrossRefGoogle Scholar
  35. 35.
    X. Li, S. Y. Chen, W. L. Hu, S. K. Shi, W. Shen, X. Zhang, and H. P. Wang, Carbohydr. Polym., 76, 509 (2009).CrossRefGoogle Scholar
  36. 36.
    W. Hu, S. Chen, B. Zhou, and H. Wang, Mater. Sci. Eng.: B, 170, 88 (2010).CrossRefGoogle Scholar
  37. 37.
    M. L. Nelson and R. T. O'Connor, J. Appl. Polym. Sci., 8, 1311 (1964).CrossRefGoogle Scholar
  38. 38.
    M. L. Nelson and R. T. O'Connor, J. Appl. Polym. Sci., 8, 1325 (1964).CrossRefGoogle Scholar
  39. 39.
    A. Carrillo, X. Colom, J. J. Sunol, and J. Saurina, Eur. Polym. J., 40, 2229 (2004).CrossRefGoogle Scholar
  40. 40.
    M. A. Moharram and O. M. Mahmoud, J. Appl. Polym. Sci., 107, 30 (2008).CrossRefGoogle Scholar
  41. 41.
    M. Roman and W. T. Winter, Biomacromolecules, 5, 1671 (2004).CrossRefGoogle Scholar
  42. 42.
    M. Martínez-Sanz, A. Lopez-Rubio, and J. M. Lagaron, Carbohydr. Polym., 98, 1072 (2013).CrossRefGoogle Scholar
  43. 43.
    T. T. Chau, W. J. Bruckard, P. T. Koh, and A. V. Nguyen, Adv. Colloid Interface Sci., 150, 106 (2009).CrossRefGoogle Scholar
  44. 44.
    W. L. Hu, S. Y. Chen, Q. S. Xu, and H. P. Wang, Carbohydr. Polym., 83, 1575 (2011).CrossRefGoogle Scholar
  45. 45.
    M. Nogi, K. Abe, K. Handa, F. Nakatsubo, S. Ifuku, and H. Yano, Appl. Phys. Lett., 89 (2006).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Naiyasit Yingkamhaeng
    • 1
  • Ittinet Intapan
    • 1
  • Prakit Sukyai
    • 1
    • 2
  1. 1.Biotechnology of Biopolymers and Bioactive Compounds Special Research Units, Department of Biotechnology, Faculty of Agro-IndustryKasetsart UniversityChatuchak, BangkokThailand
  2. 2.Center for Advanced Studies for Agriculture and Food (CASAF)Kasetsart UniversityChatuchak, BangkokThailand

Personalised recommendations