Skip to main content
Log in

Electrical Resistivity of Plasma Treated Viscose and Cotton Fabrics with Incorporated Metal Ions

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Cellulose fabrics (viscose and cotton) were treated with atmospheric pressure dielectric barrier discharge (DBD) in air. After DBD treatment, samples were characterized and volume electrical resistance was measured under different relative humidity conditions (φ=40-55 %). Results have shown that DBD treatment increases wettability and polar surface functional groups content, which consequently causes a decrease of volume electrical resistivity of cellulose fabrics in measured relative humidity range (φ=40-55 %). Metal ions (silver, copper, and zinc) were incorporated in untreated and plasma treated samples through sorption from aqueous solutions and incorporation of metal ions into plasma treated cellulose samples decreased electrical resistivity even further. Resistivity of cotton and viscose fabrics with incorporated metal ions followed the order Zn2+ > Cu2+ > Ag+. The most pronounced decrease, for entire order of a magnitude, was obtained by modification of cotton fabric with DBD and silver ions, where value of resistivity dropped from GΩ to a several dozens of MΩ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Wei, “Surface Modification of Textiles”, Woodhead Publishing Limited, Cambridge, 2009.

    Book  Google Scholar 

  2. R. A. Scott, “Textiles for Protection”, Woodhead Publishing Limited, Boca Raton, 2005.

    Book  Google Scholar 

  3. H. E. Emam, M. Rehan, H. M. Mashaly, and H. B. Ahmed, Dyes Pigment., 133, 173 (2016).

    Article  CAS  Google Scholar 

  4. H. E. Emam, N. S. El-Hawary, and H. B. Ahmed, Int. J. Biol. Macromol., 96, 697 (2017).

    Article  CAS  Google Scholar 

  5. H. E. Emam, H. B. Ahmed, and T. Bechtold, Carbohydr. Polym., 165, 255 (2017).

    Article  CAS  Google Scholar 

  6. H. E. Emam and T. Bechtold, Appl. Surf. Sci., 357, 1878 (2015).

    Article  CAS  Google Scholar 

  7. H. E. Emam and R. M. Abdelhameed, ACS Appl. Mater. Interfaces, 9, 28034 (2017).

    Article  CAS  Google Scholar 

  8. H. B. Ahmed and H. E. Emam, Fiber. Polym., 17, 418 (2016).

    Article  CAS  Google Scholar 

  9. R. Dastjerdi and M. Montazer, Colloid Surf. B: Biointerfaces, 79, 5 (2010).

    Article  CAS  Google Scholar 

  10. R. Shishoo, “Plasma Technologies for Textiles”, Woodhead Publishing Limited, Cambridge, 2007.

    Book  Google Scholar 

  11. R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, and C. Leys, Surf. Coat. Technol., 202, 3427 (2008).

    Article  CAS  Google Scholar 

  12. S. Jinka, U. Turaga, V. Singh, R. L. Behrens, C. Gumeci, C. Korzeniewski, T. Anderson, R. Wolf, and S. Ramkumar, Ind. Eng. Chem. Res., 53, 12587 (2014).

    Article  CAS  Google Scholar 

  13. S. Prabhu, K. Vaideki, and S. Anitha, Carbohydr. Polym., 156, 34 (2017).

    Article  CAS  Google Scholar 

  14. K. H. Kale and A. N. Desai, Indian J. Fibre Text., 36, 289 (2011).

    CAS  Google Scholar 

  15. H. Ventura, J. Claramunt, A. Navarro, M. A. Rodriguez-Perez, and M. Ardanuy, Materials, 9, 93 (2016).

    Article  Google Scholar 

  16. W. E. Morton and J. W. S. Hearle, “Physical Properties of Textile Fibres”, Woodhead Publishing Limited, Cambridge, 1975.

    Google Scholar 

  17. K. A. Asanovic, T. A. Mihajlidi, S. V. Milosavljevic, D. D. Cerovic, and J. R. Dojcilovic, J. Electrostat., 65, 162 (2007).

    Article  CAS  Google Scholar 

  18. D. D. Cerovic, K. A. Asanovic, S. B. Maletic, and J. R. Dojcilovic, Compos. Pt. B-Eng., 49, 65 (2013).

    Article  CAS  Google Scholar 

  19. A. Kramar, J. Milanovic, M. Korica, T. Nikolic, K. Asanovic, and M. Kostic, Cellul. Chem. Technol., 48, 189 (2014).

    CAS  Google Scholar 

  20. M. M. Hassan, Ind. Eng. Chem. Res., 53, 10954 (2014).

    Article  CAS  Google Scholar 

  21. T. Mihajlidi, S. Milosavljevic, K. Asanovic, D. Simic, and M. Simic, Fibres Text. East. Eur., 26, 29 (1999).

    Google Scholar 

  22. S. Milosavljevic, T. Mihajlidi, T. Tadic, and K. Asanovic, Asian Text. J., 8, 95 (1999).

    Google Scholar 

  23. R. Pawlak, E. Korzeniewska, M. Frydrysiak, J. Zieba, L. Tesiorowski, K. Gniotek, Z. Stempien, and M. Tokarska, Fibre Text. East. Eur., 20, 68 (2012).

    CAS  Google Scholar 

  24. H. E. Emam, A. P. Manian, B. Široka, H. Duelli, P. Merschak, B. Redl, and T. Bechtold Surf. Coat. Technol., 254, 344 (2014).

    Article  CAS  Google Scholar 

  25. A. Kramar, V. Prysiazhnyi, B. Dojcinovic, K. Mihajlovski, B. M. Obradovic, M. M. Kuraica, and M. M. Kostic, Surf. Coat. Technol., 234, 92 (2013).

    Article  CAS  Google Scholar 

  26. M. Kostic, N. Radic, B.M. Obradovic, S. Dimitrijevic, M.M. Kuraica, and P. Skundric, Plasma Processes Polym., 6, 58 (2009).

    Article  CAS  Google Scholar 

  27. A. Kramar, A. Žekic, B. Obradovic, M. Kuraica, and M. Kostic, Cellulose, 21, 3279 (2014).

    Article  CAS  Google Scholar 

  28. K. Asanovic, T. Mihailovic, P. Skundric, and L. Simovic, Text. Res. J., 80, 1665 (2010).

    Article  CAS  Google Scholar 

  29. M. M. Kostic, B. M. Pejic, K. A. Asanovic, V. M. Aleksic, and P. D. Skundric, Ind. Crops Prod., 32, 169 (2010).

    Article  CAS  Google Scholar 

  30. M. M. Hossain, A. S. Herman, and D. Hegemann, Plasma Processes Polym., 3, 299 (2006).

    Article  CAS  Google Scholar 

  31. Z. Peršin, A. Vesel, K. S. Kleinschek, and M. Mozetic, Text. Res. J., 82, 2078 (2012).

    Article  Google Scholar 

  32. R. Mitchell, C. Carr, M. Parfitt, J. Vickerman, and C. Jones, Cellulose, 12, 629 (2005).

    Article  CAS  Google Scholar 

  33. V. Prysiazhnyi, A. Kramar, B. Dojcinovic, A. Zekic, B. M. Obradovic, M. M. Kuraica, and M. Kostic, Cellulose, 20, 315 (2013).

    Article  CAS  Google Scholar 

  34. B. Acemioglu and M. H. Alma, J. Colloid. Interf. Sci., 243, 81 (2001).

    Article  CAS  Google Scholar 

  35. N. C. Cady, J. L. Behnke, and A. D. Strickland, Adv. Funct. Mater., 21, 2506 (2011).

    Article  CAS  Google Scholar 

  36. O. Sundman, P. Persson, and L. O. Ohman, J. Colloid Interface Sci., 328, 248 (2008).

    Article  CAS  Google Scholar 

  37. J. Z. Praskalo-Milanovic, M. M. Kostic, S. I. Dimitrijevic-Brankovic, and P. D. Škundric, J. Appl. Polym. Sci., 117, 1772 (2010).

    CAS  Google Scholar 

  38. J. He, T. Kunitake, and A. Nakao, Chem. Mater., 15, 4401 (2003).

    Article  CAS  Google Scholar 

  39. F. Pawlek and D. Rogalla, Cryogenics, 6, 14 (1966).

    Article  CAS  Google Scholar 

  40. S. Xingwei, Y. Hu, F. Fu, J. Zhou, Y. Wang, L. Chen, H. Zhang, J. Li, X. Wang, and L. Zhang, J. Mater. Chem. A, 2, 7669 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana D. Kramar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramar, A.D., Asanović, K.A., Obradović, B.M. et al. Electrical Resistivity of Plasma Treated Viscose and Cotton Fabrics with Incorporated Metal Ions. Fibers Polym 19, 571–579 (2018). https://doi.org/10.1007/s12221-018-7716-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7716-z

Keywords

Navigation