Fibers and Polymers

, Volume 19, Issue 3, pp 571–579 | Cite as

Electrical Resistivity of Plasma Treated Viscose and Cotton Fabrics with Incorporated Metal Ions

  • Ana D. Kramar
  • Koviljka A. Asanović
  • Bratislav M. Obradović
  • Milorad M. Kuraica
  • Mirjana M. Kostić
Article
  • 21 Downloads

Abstract

Cellulose fabrics (viscose and cotton) were treated with atmospheric pressure dielectric barrier discharge (DBD) in air. After DBD treatment, samples were characterized and volume electrical resistance was measured under different relative humidity conditions (φ=40-55 %). Results have shown that DBD treatment increases wettability and polar surface functional groups content, which consequently causes a decrease of volume electrical resistivity of cellulose fabrics in measured relative humidity range (φ=40-55 %). Metal ions (silver, copper, and zinc) were incorporated in untreated and plasma treated samples through sorption from aqueous solutions and incorporation of metal ions into plasma treated cellulose samples decreased electrical resistivity even further. Resistivity of cotton and viscose fabrics with incorporated metal ions followed the order Zn2+ > Cu2+ > Ag+. The most pronounced decrease, for entire order of a magnitude, was obtained by modification of cotton fabric with DBD and silver ions, where value of resistivity dropped from GΩ to a several dozens of MΩ.

Keywords

Cellulose Fabrics Dielectric barrier discharge (DBD) Electrical resistivity Metal ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q. Wei, “Surface Modification of Textiles”, Woodhead Publishing Limited, Cambridge, 2009.CrossRefGoogle Scholar
  2. 2.
    R. A. Scott, “Textiles for Protection”, Woodhead Publishing Limited, Boca Raton, 2005.CrossRefGoogle Scholar
  3. 3.
    H. E. Emam, M. Rehan, H. M. Mashaly, and H. B. Ahmed, Dyes Pigment., 133, 173 (2016).CrossRefGoogle Scholar
  4. 4.
    H. E. Emam, N. S. El-Hawary, and H. B. Ahmed, Int. J. Biol. Macromol., 96, 697 (2017).CrossRefGoogle Scholar
  5. 5.
    H. E. Emam, H. B. Ahmed, and T. Bechtold, Carbohydr. Polym., 165, 255 (2017).CrossRefGoogle Scholar
  6. 6.
    H. E. Emam and T. Bechtold, Appl. Surf. Sci., 357, 1878 (2015).CrossRefGoogle Scholar
  7. 7.
    H. E. Emam and R. M. Abdelhameed, ACS Appl. Mater. Interfaces, 9, 28034 (2017).CrossRefGoogle Scholar
  8. 8.
    H. B. Ahmed and H. E. Emam, Fiber. Polym., 17, 418 (2016).CrossRefGoogle Scholar
  9. 9.
    R. Dastjerdi and M. Montazer, Colloid Surf. B: Biointerfaces, 79, 5 (2010).CrossRefGoogle Scholar
  10. 10.
    R. Shishoo, “Plasma Technologies for Textiles”, Woodhead Publishing Limited, Cambridge, 2007.CrossRefGoogle Scholar
  11. 11.
    R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, and C. Leys, Surf. Coat. Technol., 202, 3427 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Jinka, U. Turaga, V. Singh, R. L. Behrens, C. Gumeci, C. Korzeniewski, T. Anderson, R. Wolf, and S. Ramkumar, Ind. Eng. Chem. Res., 53, 12587 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Prabhu, K. Vaideki, and S. Anitha, Carbohydr. Polym., 156, 34 (2017).CrossRefGoogle Scholar
  14. 14.
    K. H. Kale and A. N. Desai, Indian J. Fibre Text., 36, 289 (2011).Google Scholar
  15. 15.
    H. Ventura, J. Claramunt, A. Navarro, M. A. Rodriguez-Perez, and M. Ardanuy, Materials, 9, 93 (2016).CrossRefGoogle Scholar
  16. 16.
    W. E. Morton and J. W. S. Hearle, “Physical Properties of Textile Fibres”, Woodhead Publishing Limited, Cambridge, 1975.Google Scholar
  17. 17.
    K. A. Asanovic, T. A. Mihajlidi, S. V. Milosavljevic, D. D. Cerovic, and J. R. Dojcilovic, J. Electrostat., 65, 162 (2007).CrossRefGoogle Scholar
  18. 18.
    D. D. Cerovic, K. A. Asanovic, S. B. Maletic, and J. R. Dojcilovic, Compos. Pt. B-Eng., 49, 65 (2013).CrossRefGoogle Scholar
  19. 19.
    A. Kramar, J. Milanovic, M. Korica, T. Nikolic, K. Asanovic, and M. Kostic, Cellul. Chem. Technol., 48, 189 (2014).Google Scholar
  20. 20.
    M. M. Hassan, Ind. Eng. Chem. Res., 53, 10954 (2014).CrossRefGoogle Scholar
  21. 21.
    T. Mihajlidi, S. Milosavljevic, K. Asanovic, D. Simic, and M. Simic, Fibres Text. East. Eur., 26, 29 (1999).Google Scholar
  22. 22.
    S. Milosavljevic, T. Mihajlidi, T. Tadic, and K. Asanovic, Asian Text. J., 8, 95 (1999).Google Scholar
  23. 23.
    R. Pawlak, E. Korzeniewska, M. Frydrysiak, J. Zieba, L. Tesiorowski, K. Gniotek, Z. Stempien, and M. Tokarska, Fibre Text. East. Eur., 20, 68 (2012).Google Scholar
  24. 24.
    H. E. Emam, A. P. Manian, B. Široka, H. Duelli, P. Merschak, B. Redl, and T. Bechtold Surf. Coat. Technol., 254, 344 (2014).CrossRefGoogle Scholar
  25. 25.
    A. Kramar, V. Prysiazhnyi, B. Dojcinovic, K. Mihajlovski, B. M. Obradovic, M. M. Kuraica, and M. M. Kostic, Surf. Coat. Technol., 234, 92 (2013).CrossRefGoogle Scholar
  26. 26.
    M. Kostic, N. Radic, B.M. Obradovic, S. Dimitrijevic, M.M. Kuraica, and P. Skundric, Plasma Processes Polym., 6, 58 (2009).CrossRefGoogle Scholar
  27. 27.
    A. Kramar, A. Žekic, B. Obradovic, M. Kuraica, and M. Kostic, Cellulose, 21, 3279 (2014).CrossRefGoogle Scholar
  28. 28.
    K. Asanovic, T. Mihailovic, P. Skundric, and L. Simovic, Text. Res. J., 80, 1665 (2010).CrossRefGoogle Scholar
  29. 29.
    M. M. Kostic, B. M. Pejic, K. A. Asanovic, V. M. Aleksic, and P. D. Skundric, Ind. Crops Prod., 32, 169 (2010).CrossRefGoogle Scholar
  30. 30.
    M. M. Hossain, A. S. Herman, and D. Hegemann, Plasma Processes Polym., 3, 299 (2006).CrossRefGoogle Scholar
  31. 31.
    Z. Peršin, A. Vesel, K. S. Kleinschek, and M. Mozetic, Text. Res. J., 82, 2078 (2012).CrossRefGoogle Scholar
  32. 32.
    R. Mitchell, C. Carr, M. Parfitt, J. Vickerman, and C. Jones, Cellulose, 12, 629 (2005).CrossRefGoogle Scholar
  33. 33.
    V. Prysiazhnyi, A. Kramar, B. Dojcinovic, A. Zekic, B. M. Obradovic, M. M. Kuraica, and M. Kostic, Cellulose, 20, 315 (2013).CrossRefGoogle Scholar
  34. 34.
    B. Acemioglu and M. H. Alma, J. Colloid. Interf. Sci., 243, 81 (2001).CrossRefGoogle Scholar
  35. 35.
    N. C. Cady, J. L. Behnke, and A. D. Strickland, Adv. Funct. Mater., 21, 2506 (2011).CrossRefGoogle Scholar
  36. 36.
    O. Sundman, P. Persson, and L. O. Ohman, J. Colloid Interface Sci., 328, 248 (2008).CrossRefGoogle Scholar
  37. 37.
    J. Z. Praskalo-Milanovic, M. M. Kostic, S. I. Dimitrijevic-Brankovic, and P. D. Škundric, J. Appl. Polym. Sci., 117, 1772 (2010).Google Scholar
  38. 38.
    J. He, T. Kunitake, and A. Nakao, Chem. Mater., 15, 4401 (2003).CrossRefGoogle Scholar
  39. 39.
    F. Pawlek and D. Rogalla, Cryogenics, 6, 14 (1966).CrossRefGoogle Scholar
  40. 40.
    S. Xingwei, Y. Hu, F. Fu, J. Zhou, Y. Wang, L. Chen, H. Zhang, J. Li, X. Wang, and L. Zhang, J. Mater. Chem. A, 2, 7669 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ana D. Kramar
    • 1
  • Koviljka A. Asanović
    • 1
  • Bratislav M. Obradović
    • 2
  • Milorad M. Kuraica
    • 2
  • Mirjana M. Kostić
    • 1
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations