Fibers and Polymers

, Volume 19, Issue 3, pp 561–570 | Cite as

Effects of Chemical Functionalization of MWCNTs on the Structural and Physical Properties of Elastomeric Copolyetherester-based Composite Fibers

  • Min Ho Jee
  • Doo Hyun Baik


Elastomeric copolyetherester (CPEE)-based composite fibers incorporating various neat and functionalized multiwalled carbon nanotubes (MWCNTs) were prepared through a conventional wet-spinning and coagulation process. The influence of functionalized MWCNTs on the morphological features, and the thermal, mechanical properties and electrical conductivity of CPEE/MWCNT (80/20, w/w) composite fibers were investigated. FE-SEM images show that a composite fiber containing poly(ethylene glycol)-functionalized MWCNTs (MWCNT-PEG) has a relatively smooth surface owing to the good dispersion of MWCNT-PEGs within the fiber, whereas composite fibers including pristine MWCNTs (p-MWCNT), acid-functionalized MWCNTs (a-MWCNT), and ethylene glycol-modified MWCNTs (MWCNT-EG) have quite a rough surface morphology owing to the presence of MWCNT aggregates. As a result, the CPEE/MWCNT-PEG composite fiber exhibits noticeably increased thermal and tensile mechanical properties as well as a faster crystallization behavior, which stems from an enhanced interfacial interaction between the CPEE matrix and MWCNT-PEGs.


Functionalized MWCNTs Composite fibers Wet-spinning Morphological features Mechanical property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. Georliga, and C. Dekker, Nature, 386, 474 (1997).CrossRefGoogle Scholar
  2. 2.
    S. D. Lee, O. J. Kwon, B. C. Chun, J. W. Cho, and J. S. Park, Fiber. Polym., 10, 71 (2009).CrossRefGoogle Scholar
  3. 3.
    D. Walters, L. Ericson, M. Casavant, J. Liu, D. Colbert, K. Smith, and R. Smalley, Appl. Phys. Lett., 74, 3803 (1999).CrossRefGoogle Scholar
  4. 4.
    M. H. Jee, J. S. Lee, J. Y. Lee, Y. G. Jeong, and D. H. Baik, Fiber. Polym., 11, 1 (2010).CrossRefGoogle Scholar
  5. 5.
    H. J. Jang, W. J. Kim, and Y. S. Chung, Text. Sci. Eng., 53, 24 (2016).CrossRefGoogle Scholar
  6. 6.
    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002).CrossRefGoogle Scholar
  7. 7.
    M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Phys. Rev. Lett., 84, 5552 (2000).CrossRefGoogle Scholar
  8. 8.
    H. H. No, G. Yuang, D. H. Cho, and J. K. Lee, Text. Sci. Eng., 53, 171 (2016).CrossRefGoogle Scholar
  9. 9.
    N. Behabtu, M. J. Green, and M. Pasquali, Nano Today, 3, 24 (2008).CrossRefGoogle Scholar
  10. 10.
    M. J. Green, N. Behabtu, M. Pasquali, and W. W. Adams, Polymer, 50, 4979 (2009).CrossRefGoogle Scholar
  11. 11.
    W. K. Choi, G. Y. Park, H. S. Shin, Y. S. Kuk, B. S. Kim, and M. K. Seo, Text. Sci. Eng., 54, 209 (2017).Google Scholar
  12. 12.
    H. G. Chae and S. Kumar, Science, 319, 908 (2008).CrossRefGoogle Scholar
  13. 13.
    F. Mai, D. Pan, X. Gao, M. Yao, H. Deng, K. Wang, F. Chen, and Q. Fu, Polym. Int., 60, 1646 (2011).CrossRefGoogle Scholar
  14. 14.
    X. Xu, A. J. Uddin, K. Aoki, Y. Gotoh, T. Saito, and M. Yumura, Carbon, 48, 1977 (2010).CrossRefGoogle Scholar
  15. 15.
    L. Deng, R. J. Young, S. van der Zwaag, and S. Picken, Polymer, 51, 2033 (2010).CrossRefGoogle Scholar
  16. 16.
    J. M. Razal, J. N. Coleman, E. Munoz, B. Lund, Y. Gogotsi, H. Ye, S. Collins, A. B. Dalton, and R. H. Baughman, Adv. Func. Mater., 17, 2918 (2007).CrossRefGoogle Scholar
  17. 17.
    E. Muñoz, D. S. Suh, S. Collins, M. Selvidge, A. B. Dalton, B. G. Kim, J. M. Razal, G. Ussery, A. G. Rinzler, and M. T. Martínez, Adv. Mater., 17, 1064 (2005).CrossRefGoogle Scholar
  18. 18.
    E. Munoz, A. B. Dalton, S. Collins, M. Kozlov, J. Razal, J. N. Coleman, B. G. Kim, V. H. Ebron, M. Selvidge, and J. P. Ferraris, Adv. Eng. Mater., 6, 801 (2004).CrossRefGoogle Scholar
  19. 19.
    S. Ruan, P. Gao, and T. Yu, Polymer, 47, 1604 (2006).CrossRefGoogle Scholar
  20. 20.
    Z. Li, G. Luo, F. Wei, and Y. Huang, Compos. Sci. Technol., 66, 1022 (2006).CrossRefGoogle Scholar
  21. 21.
    Q. Meng and J. Hu, Compos. Part A: Appl. Sci. Manuf., 39, 314 (2008).CrossRefGoogle Scholar
  22. 22.
    L. Shen, X. Gao, Y. Tong, A. Yeh, R. Li, and D. Wu, J. Appl. Polym. Sci., 108, 2865 (2008).CrossRefGoogle Scholar
  23. 23.
    S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, R. A. Vaia, C. Park, W. W. Adams, and R. H. Hauge, Macromolecules, 35, 9039 (2002).CrossRefGoogle Scholar
  24. 24.
    B. G. Min, T. Sreekumar, T. Uchida, and S. Kumar, Carbon, 43, 599 (2005).CrossRefGoogle Scholar
  25. 25.
    H. G. Chae, M. L. Minus, A. Rasheed, and S. Kumar, Polymer, 48, 3781 (2007).CrossRefGoogle Scholar
  26. 26.
    B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin, Science, 290, 1331 (2000).CrossRefGoogle Scholar
  27. 27.
    B. Vigolo, P. Poulin, M. Lucas, P. Launois, and P. Bernier, Appl. Phys. Lett., 81, 1210 (2002).CrossRefGoogle Scholar
  28. 28.
    P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, and C. Zakri, Nano Lett., 5, 2212 (2005).CrossRefGoogle Scholar
  29. 29.
    A. B. Dalton, S. Collins, J. Razal, E. Munoz, V. H. Ebron, B. G. Kim, J. N. Coleman, J. P. Ferraris and R. H. Baughman, J. Mater. Chem., 14, 1 (2004).CrossRefGoogle Scholar
  30. 30.
    M. H. Jee, S. H. Park, J. U. Choi, Y. G. Jeong, and D. H. Baik, Fiber. Polym., 13, 443 (2012).CrossRefGoogle Scholar
  31. 31.
    M. H. Jee, J. U. Choi, S. H. Park, Y. G. Jeong, and D. H. Baik, Macromol. Res., 20, 650 (2012).CrossRefGoogle Scholar
  32. 32.
    N. Lachman, C. Bartholome, P. Miaudet, M. Maugey, P. Poulin, and H. D. Wagner, J. Phys. Chem. C, 113, 4751 (2009).CrossRefGoogle Scholar
  33. 33.
    C. Bergeret, J. Cousseau, V. Fernandez, J.-Y. Mevellec, and S. Lefrant, J. Phys. Chem. C, 112, 16411 (2008).CrossRefGoogle Scholar
  34. 34.
    K. A. Wepasnick, B. A. Smith, J. L. Bitter, and D. H. Fairbrother, Anal. Bioanal. Chem., 396, 1003 (2010).CrossRefGoogle Scholar
  35. 35.
    G. Liang, J. Xu, and W. Xu, J. Appl. Polym. Sci., 91, 3054 (2004).CrossRefGoogle Scholar
  36. 36.
    Y. Wang, C. Shen, H. Li, Q. Li, and J. Chen, J. Appl. Polym. Sci., 91, 308 (2004).CrossRefGoogle Scholar
  37. 37.
    A. Jeziorny, Polymer, 19, 1142 (1978).CrossRefGoogle Scholar
  38. 38.
    D. Baik, M. Lee, B. Jeon, and M. Han, Text. Sci. Eng., 31, 613 (1994).Google Scholar
  39. 39.
    W. Ma, L. Liu, R. Yang, T. Zhang, Z. Zhang, L. Song, Y. Ren, J. Shen, Z. Niu, and W. Zhou, Adv. Mater., 21, 603 (2009).CrossRefGoogle Scholar
  40. 40.
    M. Mu, S. Osswald, Y. Gogotsi, and K. I. Winey, Nanotechnology, 20, 335703 (2009).CrossRefGoogle Scholar
  41. 41.
    S. Zhang, L. Zhu, M. L. Minus, H. G. Chae, S. Jagannathan, C.-P. Wong, J. Kowalik, L. B. Roberson, and S. Kumar, J. Mater. Sci., 43, 4356 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Advanced Organic Materials and Textile System EngineeringChungnam National UniversityDaejeonKorea

Personalised recommendations