Advertisement

Fibers and Polymers

, Volume 19, Issue 3, pp 627–634 | Cite as

Encapsulation of Phytoncide in Nanofibers by Emulsion Electrospinning and their Antimicrobial Assessment

  • Jiyoung Shin
  • Seungsin Lee
Article
  • 59 Downloads

Abstract

Phytoncides are volatile organic compounds released from trees and plants and are well known for their natural antibacterial activity. In this study, emulsion electrospinning was used to encapsulate phytoncide in the core of nanofibers, with the aim of developing environmentally friendly, functional nanofibers with a sustained release of the encapsulated component. Core/sheath structured phytoncide/poly(vinyl alcohol) nanofibers were successfully prepared by emulsion electrospinning using an ordinary single-nozzle electrospinning setup. An oil-in-water emulsion of an aqueous solution of poly(vinyl alcohol) (as the aqueous phase) and phytoncide (as the oil phase) was used to prepare the core/sheath structured nanofibers. Nanocomposite fibers were electrospun under various spinning conditions and emulsion formulations to find the suitable processing conditions for fabricating nanofibers with core/sheath structures. The resulting nanofibers exhibited a well-aligned core/sheath structure with fiber diameters of 250-350 nm. The release profile of phytoncide from the core of nanofibers over a 21 day period showed that phytoncide was released in a sustained manner over 14 days. The core/sheath structured phytoncide/poly(vinyl alcohol) nanofibers exhibited 99.9 % bacterial reduction against both Staphylococcus aureus and Escherichia coli, indicating that the encapsulated phytoncide in the fiber provided strong antimicrobial effects.

Keywords

Phytoncide Nanofiber Emulsion electrospinning Core/sheath structure Antimicrobial property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Yarin, Polym. Adv. Technol., 22, 310 (2011).CrossRefGoogle Scholar
  2. 2.
    D. Crespy, K. Friedemann, and A. Popa, Macromol. Rapid. Comm., 33, 1978 (2012).CrossRefGoogle Scholar
  3. 3.
    Y. Gao, Y. B. Truong, Y. Zhu, and I. L. Kyratzis, J. Appl. Polym. Sci., 131, 40797 (2014).CrossRefGoogle Scholar
  4. 4.
    X. Xu, X. Zhuang, X. Chen, X. Wang, L. Yang, and X. Jing, Macromol. Rapid. Comm., 27, 1637 (2006).CrossRefGoogle Scholar
  5. 5.
    M. Angeles, H. L. Cheng, and S. S. Velankar, Polym. Adv. Technol., 19, 728 (2008).CrossRefGoogle Scholar
  6. 6.
    C. Kriegel, K. M. Kit, D. J. McClements, and J. Weiss, Langmuir, 25, 1154 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Wei, Y. Li, H. Mugishima, A. Teramoto, and K. Abe, Biotechnol. J., 7, 677 (2012).CrossRefGoogle Scholar
  8. 8.
    X. Wang, Y. Yuan, X. Huang, and T. Yue, J. Appl. Polym. Sci., 132, 41811 (2015).Google Scholar
  9. 9.
    K. Kawakami, M. Kawamoto, M. Nomura, H. Otani, T. Nabika, and T. Gonda, Clin. Exp. Pharmacol. Physiol., 31, S27 (2004).CrossRefGoogle Scholar
  10. 10.
    T. Abe, M. Hisama, S. Tanimoto, H. Shibayama, Y. Mihara, and M. Nomura, Biocontrol. Sci., 13, 23 (2008).CrossRefGoogle Scholar
  11. 11.
    S. Y. Wang, W. C. Lai, F. H. Chu, C. T. Lin, S. Y. Shen, and S. T. Chang, J. Wood. Sci., 52, 522 (2006).CrossRefGoogle Scholar
  12. 12.
    Q. Li, A. Nakadai, H. Matsushima, Y. Miyazaki, A. M. Krensky, T. Kawada, and K. Morimoto, Immunopharm. Immunot., 28, 319 (2006).CrossRefGoogle Scholar
  13. 13.
    W. W. Cheng, C. T. Lin, F. H. Chu, S. T. Chang, and S. Y. Wang, J. Wood. Sci., 55, 27 (2009).CrossRefGoogle Scholar
  14. 14.
    Q. Li, T. Otsuka, M. Kobayashi, Y. Wakayama, H. Inagaki, M. Katsumata, Y. Hirata, Y. Li, K. Hirata, T. Shimizu, and H. Suzuki, Eur. J. Appl. Physiol., 111, 2845 (2011).CrossRefGoogle Scholar
  15. 15.
    H. Zheng, Y. Du, J. Yu, R. Huang, and L. Zhang, J. Appl. Polym. Sci., 80, 2558 (2001).CrossRefGoogle Scholar
  16. 16.
    I. Sakurada, “Polyvinyl Alcohol Fibers”, pp.187–209, Marcel Dekker, Inc., New York, 1985.Google Scholar
  17. 17.
    J. Israelachvili, Colloid. Surface. A, 91, 1 (1994).CrossRefGoogle Scholar
  18. 18.
    R. C. Pasquali, M. P. Taurozzi, and C. Bregni, Int. J. Pharm., 356, 44 (2008).CrossRefGoogle Scholar
  19. 19.
    R. K. Tubbs in “Polyvinyl Alcohol: Developments”, 2nd ed. (C. A. Finch Ed.), pp.361–402, John Wiley & Sons Ltd., New York, 1992.Google Scholar
  20. 20.
    K. Lee and S. Lee, J. Appl. Polym. Sci., 124, 4038 (2012).CrossRefGoogle Scholar
  21. 21.
    K. K. H. Wong, M. Zinke-Allmang, and W. Wan, J. Mater. Sci., 45, 2456 (2010).CrossRefGoogle Scholar
  22. 22.
    M. Miraftab, A. N. Saifullah, and A. Çay, J. Mater. Sci., 50, 1943 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Hisama, S. Matsuda, T. Tanaka, H. Shibayama, M. Nomura, and M. Iwaki, J. Oleo. Sci., 57, 381 (2008).CrossRefGoogle Scholar
  24. 24.
    M. A. Ibrahim, P. Kainulainen, A. Aflatuni, K. Tiilikkala, and J. K. Holopainen, Agr. Food. Sci. Finland., 10, 243 (2001).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clothing and TextilesYonsei UniversitySeoulKorea

Personalised recommendations