Advertisement

Fibers and Polymers

, Volume 19, Issue 3, pp 538–547 | Cite as

Effects of Alkyl Chain Length of Aliphatic Dicarboxylic Ester on Degradation Properties of Aliphatic-Aromatic Water-Soluble Copolyesters for Warp Sizing

  • Manli Li
  • Enqi Jin
  • Zhiyong Qiao
  • Rongli Zhao
Article
  • 32 Downloads

Abstract

In order to study the effects of alkyl chain length of aliphatic dicarboxylic ester (ADE) monomers on enzymatic and hydrolytic degradation properties of aliphatic-aromatic water-soluble copolyesters for warp sizing, dimethyl terephthalate, dimethyl isophthalate-5-sulfonic sodium, and ADE monomers with various alkyl chain lengths were copolymerized through a two-step method, i.e. transesterification and polycondensation. The enzymatic and hydrolytic degradation properties of the copolyesters were studied in terms of reduction rates of molecular weight, glass transition temperatures, and surface morphology after being cultivated for 24-96 h. It was found that, enzymatic degradation of the copolyesters strongly depended on alkyl chain length of ADE monomers. After being enzymatically degraded for 96 h, reduction rate of molecular weight of the copolyester using dimethyl malonate as ADE monomers could reach 22.2 %. Meanwhile, the hydrolytic degradation of the copolyesters was not directly related to the alkyl chain length.

Keywords

Aliphatic-aromatic water-soluble copolyester Alkyl chain length ADE monomer Degradation property Sizing agent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. Ben, Master Thesis, Xi’an Polytechnic University, Xi’an, 2005.Google Scholar
  2. 2.
    Z. Y. Qiao, H. Zhu, E. Q. Jin, Z. X. Zhang, and Y. L. Li, AATCC J. Res., 1, 1 (2014).CrossRefGoogle Scholar
  3. 3.
    X. D. Zhang, W. Y. Li, and X. Liu, J. Appl. Polym. Sci., 88, 1563 (2003).CrossRefGoogle Scholar
  4. 4.
    C. J. Kibler, G. R. Lappin, D. J. Shields, J. M. Hawkins, and W. C. J. Wooten, German Patent, 1816163 (1969).Google Scholar
  5. 5.
    E. Q. Jin, Z. F. Zhu, Y. Q. Yang, G. C. Miao, and M. L. Li, J. Text. Inst., 102, 681 (2011).CrossRefGoogle Scholar
  6. 6.
    M. L. Li, E. Q. Jin, and Y. Y. Lian, J. Text. Inst., 107, 1490 (2016).CrossRefGoogle Scholar
  7. 7.
    E. Jin, M. Li, and L. Zhang, J. Text. Res., 37, 66 (2016).Google Scholar
  8. 8.
    P. R. Chen and W. H. Yang, Tetrahedron Lett., 55, 2290 (2014).CrossRefGoogle Scholar
  9. 9.
    R. Sundell, M. C. Turcu, and L. T. Kanerva, Curr. Org. Chem., 17, 672 (2013).CrossRefGoogle Scholar
  10. 10.
    R. C. Zheng, A. P. Li, Z. M. Wu, J. Y. Zheng, and Y. G. Zheng, Tetrahedron-Asymmetr., 23, 1517 (2012).CrossRefGoogle Scholar
  11. 11.
    E. Q. Jin, Z. F. Zhu, and H. Zhang, Man-Made Text. In India, 51, 274 (2008).Google Scholar
  12. 12.
    E. Q. Jin, Z. F. Zhu, and Y. Q. Yang, J. Text. Inst., 101, 1112 (2010).CrossRefGoogle Scholar
  13. 13.
    T. Iqbal, S. Yasin, P. F. Luckham, N. Ramzan, and M. Mohsin, Fiber. Polym., 15, 1042 (2014).CrossRefGoogle Scholar
  14. 14.
    K. A. Rubinson and J. F. Rubinson, “Contemporary Instrumental Analysis” 1st ed., pp.484–485, Science Press, Beijing, 2003.Google Scholar
  15. 15.
    W. Kemp, “Qualitative Organic Analysis: Spectrochemical Techniques”, 2nd ed., pp.134–135, McGraw-Hill Book Company (UK) Limited, London, 1986.Google Scholar
  16. 16.
    D. H. Baik and G. L. Kim, Fiber. Polym., 2, 26 (2001).CrossRefGoogle Scholar
  17. 17.
    X. J. Xu, Ph. D. Dissertation, Donghua University, Shanghai, 2007.Google Scholar
  18. 18.
    D. I. Bower, “An Introduction to Polymer Physics”, 1st ed., pp.211–212, Cambridge University Press, New York, 2002.CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Textiles and GarmentsShaoxing UniversityShaoxingChina
  2. 2.Changzhou Textile Garment InstituteChangzhouChina

Personalised recommendations