Advertisement

Fibers and Polymers

, Volume 19, Issue 3, pp 682–691 | Cite as

Finite Element Analysis on the Mechanical Properties of Self-lubricating Fabric Liners Based on Periodic Boundary Conditions

  • Yahong Xue
  • Jigang Chen
  • Xin Shi
  • Jichuan Yao
  • Junting Luo
Article
  • 37 Downloads

Abstract

A new parameterized finite element model was established for self-lubricating fabric liners in different weaving patterns. This model precisely simulated the spatial configuration of woven yarns with consideration of the cross-section deformation as well as the anisotropic material characteristics of yarns by converting the principal material direction along the yarn-path. Moreover, a set of simple and universal periodic boundary equations was proposed to solve the problem of the overabundance restriction in the boundary surfaces. To verify the validation of the finite element method proposed in this paper, an experimental prediction on elastic constants of self-lubricating fabric liners was carried out. The results indicate that the finite element model can successfully predict the macro mechanical properties of self-lubricating fabric liners with periodical structures. Based on the finite element model, the distributions of stress and strain, as well as the effects of weaving type and weaving density on the elastic modulus of fabric liners were investigated in details.

Keywords

Self-lubricating fabric liner Elastic property Finite element model Periodic boundary condition Weaving pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yang, D. Zu, R. Zhang, and X. Qi, Chin. J. Mech. Eng., 22, 918 (2009).CrossRefGoogle Scholar
  2. 2.
    L. Cao, X. Shen, and R. Li, Adv. Mater. Res., 97, 3366 (2010).CrossRefGoogle Scholar
  3. 3.
    Z. Liu and X. Shen, Adv. Mater. Res., 139, 190 (2010).Google Scholar
  4. 4.
    E. J. Barbero, J. Trovillion, J. A. Mayugo, and K. Sikkil, Compos. Struct., 73, 41 (2006).CrossRefGoogle Scholar
  5. 5.
    X. Yuan, H. Hu, and Y. Xu, J. Text. Inst., 104, 278 (2013).CrossRefGoogle Scholar
  6. 6.
    C. C. Chamis, J. Compos. Technol. Res., 11, 3 (1984).Google Scholar
  7. 7.
    C. T. Sun and R. S. Vaidya, Compos. Sci. Technol., 56, 171 (1996).CrossRefGoogle Scholar
  8. 8.
    M. Hori and S. Nemat-Nasser, Mech. Mater., 31, 667 (1999).CrossRefGoogle Scholar
  9. 9.
    K. Xu and X. Xu, Mater. Sci. Eng., A 487, 499 (2008).CrossRefGoogle Scholar
  10. 10.
    D. Li, D. Fang, N. Jiang, and X. Yao, Compos. Pt. B-Eng., 42, 1373 (2011).CrossRefGoogle Scholar
  11. 11.
    G. Fang, J. Liang, and B. Wang, Compos. Struct., 89, 126 (2009).CrossRefGoogle Scholar
  12. 12.
    C. Zhang, X. Xu, and X. Yan, Acta Aeronaut. Astronaut. Sin., 34, 1636 (2013).Google Scholar
  13. 13.
    I. A. A. Bakar, O. Kramer, S. Bordas, and T. Rabczuk, Compos. Struct., 100, 575 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Ma, Y. Yang, and X. Qi, Indian J. Fibre Text. Res., 40, 293 (2015).Google Scholar
  15. 15.
    D. Gu, Y. Yang, X. Qi, W. Deng, and L. Shi, Chin. J. Mech. Eng., 25, 361 (2012).CrossRefGoogle Scholar
  16. 16.
    X. Shen, P. Gao, Z. Liu, and X. Chen, J. Nanomater., 1, 1 (2014).CrossRefGoogle Scholar
  17. 17.
    Z. Xia, C. Zhou, Q. Yong, and X. Wang, Int. J. Solids Struct., 43, 266 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yahong Xue
    • 1
    • 2
    • 3
  • Jigang Chen
    • 1
    • 2
  • Xin Shi
    • 1
    • 2
  • Jichuan Yao
    • 1
    • 2
  • Junting Luo
    • 1
    • 3
  1. 1.School of Mechanical EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.Aviation Key Laboratory of Science and Technology on Generic Technology of Self-Lubricating Spherical Plain BearingYanshan UniversityQinhuangdaoChina
  3. 3.Education Ministry Key Laboratory of Advanced Forging and Stamping Technology and ScienceYanshan UniversityQinhuangdaoChina

Personalised recommendations