Fibers and Polymers

, Volume 19, Issue 3, pp 531–537 | Cite as

Working Conditions on the Afterglow Characteristics of Rare-earth Luminous Fibers

  • Xuefeng Guo
  • Keqin Zhang
  • Hongwei Zhang
  • Mingqiao Ge


To test and clarify the stability of afterglow performance of luminescent fibers can accelerate the step of the commercialized application on luminescent textiles. This work investigated the possible effects of a number of working conditions on the afterglow characteristics of luminous fibers. The fibers in our studies did not show any significant change in their afterglow brightness and duration after storage for 12 months under conditions of constant temperature and humidity, after 5 hours of light exposure, or soaking in water for 4 hours. The insignificant decay appears to follow the same mechanism. Thermal perturbation seemed to cause some changes to the initial brightness and decay time with the best performance being observed at about 80°C. Moreover, contact with acid or base for 5 minutes only resulted in slight reduction of the afterglow brightness. Our studies thus indicate a high degree of stability of the afterglow performance of the luminous fibers used.


Luminous fiber Afterglow Application Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. T. Zhang, F. Zhang, and Z. L. Tang, J. Funct. Mater., 30, 295 (1999).Google Scholar
  2. 2.
    X. F. Guo, M. Q. Ge, and J. M. Zhao, Fiber. Polym., 12, 875 (2011).CrossRefGoogle Scholar
  3. 3.
    A. J. Lenus, K. G. Rajan, M. Yousuf, D. Sornadurai, and B. Purniah, Mat. Lett., 54, 70 (2002).CrossRefGoogle Scholar
  4. 4.
    L. L. Peng, Y. Y. Luo, Y. Dan, L. Zhang, Q. Zhan, S. M. Xia, and X. L. Zhang, Colloid Polym. Sci., 285, 153 (2006).CrossRefGoogle Scholar
  5. 5.
    A. A. Hamza, I. M. Fouda, M. A. Kabeel, and H. M. Shabana, Polym. Test., 8, 201 (1989).CrossRefGoogle Scholar
  6. 6.
    M. Q. Ge, X. F. Guo, and Y. H. Yan, Text. Res. J., 82, 677 (2012).CrossRefGoogle Scholar
  7. 7.
    Y. N. Xu, MS Thesis, Jiangnan University, 2008.Google Scholar
  8. 8.
    J. M. Zhao, X. F. Guo, Y. N. Xu, and M. Q. Ge, J. Text. Res., 29, 1 (2008).Google Scholar
  9. 9.
    J. S. Zhang and M. Q. Ge, J. Text. Res., 34, 12 (2013).Google Scholar
  10. 10.
    Z. P. Yang, Y. Yang, and S. C. Zhu, J. Chin. Ceram Soc., 32, 1050 (2004).Google Scholar
  11. 11.
    X. F. Guo and M. Q. Ge, Text. Res. J., 83, 1263 (2013).CrossRefGoogle Scholar
  12. 12.
    D. F. Zhou, C. S. Shi, and Z. M. Qi, J. Chin Rare Earth Soc., 24, 18 (2006).CrossRefGoogle Scholar
  13. 13.
    D. Haranath, V. Shanker, H. Chander, and P. Sharma, Mat. Chem. Phys., 78, 6 (2002).CrossRefGoogle Scholar
  14. 14.
    H. Aizawa, T. Katsumata, J. Takahashi, and K. Matsunaga, Rev. Sci. Instrum., 74, 1344 (2003).CrossRefGoogle Scholar
  15. 15.
    X. W. Zan, B. Feng, Y. M. Fu, and Z. M. Zhou, Transducer and Microsystem Tech., 28, 8 (2009).Google Scholar
  16. 16.
    Y. H. Lin, Z. T. Zhang, and Z. L. Tang, Mat. Chem. Phys., 70, 156 (2001).CrossRefGoogle Scholar
  17. 17.
    X. F. Guo and M. Q. Ge, J. Text. Res., 34, 9 (2013).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Xuefeng Guo
    • 1
    • 2
  • Keqin Zhang
    • 1
  • Hongwei Zhang
    • 2
  • Mingqiao Ge
    • 3
  1. 1.College for Textile and Clothing Engineering, National Engineering Laboratory for Modern SilkSoochow UniversitySuzhouChina
  2. 2.Department of Textile Chemistry Engineering, Key Laboratory of New MaterialChangzhou Textile Garment InstituteChangzhouChina
  3. 3.College of Textiles and Clothing, Key Laboratory of Eco-Textile Ministry of EducationJiangnan UniversityWuxiChina

Personalised recommendations