Advertisement

Fibers and Polymers

, Volume 19, Issue 3, pp 498–506 | Cite as

The Preparation and Characterization of Ultrafine Fatty Acid Ester/Poly(meta-phenylene isophthalamide) Phase Change Fibers Designed for Thermo-regulating Protective Clothing

  • Weiwang Chen
  • Shunjiang Ni
  • Wenguo Weng
  • Ming Fu
Article
  • 81 Downloads

Abstract

Poly(meta-phenylene isophthalamide, PMIA)-based phase change fibers (PCFs) with fatty acid ester (i.e. HPCMEs) as the functional ingredient were successfully fabricated by emulsion electrospinning. Subsequent characterizations by FE-SEM, TEM, DSC and TGA were performed to investigate their morphology, structure, thermal storage and decomposition behavior, respectively. Experimental results reveal that the fabricated PCFs are randomly arranged and show a good cylindrical structure with fiber diameters ranging from tens to hundreds of nanometers. Most of the HPCMEs are well encapsulated by PMIA sheaths and appear as isolated segments or elongated channels inside the fiber. Given their proper phase change span (30-40°C), considerable enthalpies, good shape stability and greatly enhanced thermal resistance, the prepared HPCMEs/PMIA PCFs are expected to have wide prospects in thermo-regulating protective clothing and other fields related to thermal energy storage.

Keywords

Fibers Electrospinning Phase Change Materials Morphology Thermal properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12221_2018_7180_MOESM1_ESM.pdf (156 kb)
Ultrafine Fatty Acid Ester/Poly (meta-phenylene isophthalamide) Phase Change Fibers for Thermo-regulating Protective Clothing

References

  1. 1.
    R. Nayak, S. Houshyar, and R. Padhye, Fire Sci. Rev., 3, 1 (2014).CrossRefGoogle Scholar
  2. 2.
    D. Barr, W. Gregson, and T. Reilly, Appl. Ergon., 41, 161 (2010).CrossRefGoogle Scholar
  3. 3.
    G. A. Selkirk, T. M. McLellan, and J. Wong, J. Occup. Environ. Hyg., 1, 521 (2004).CrossRefGoogle Scholar
  4. 4.
    A. D. Flouris and S. S. Cheung, Ann. Biomed. Eng., 34, 168 (2006).CrossRefGoogle Scholar
  5. 5.
    G. P. Kenny, A. R. Schissler, J. Stapleton, M. Piamonte, K. Binder, A. Lynn, C. Q. Lan, and S. G. Hardcastle, J. Occup. Environ. Hyg., 8, 484 (2011).CrossRefGoogle Scholar
  6. 6.
    N. Sarier and E. Onder, Thermochim. Acta, 540, 7 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Mondal, Appl. Therm. Eng., 28, 1536 (2008).CrossRefGoogle Scholar
  8. 8.
    C. Gao, K. Kuklane, F. Wang, and I. Holmér, Indoor Air, 22, 523 (2012).CrossRefGoogle Scholar
  9. 9.
    G. Nelson, Int. J. Pharmaceut., 242, 55 (2002).CrossRefGoogle Scholar
  10. 10.
    P. Sánchez, M. V. Sánchez-Fernandez, A. Romero, J. F. Rodríguez, and L. Sánchez-Silva, Thermochim. Acta, 498, 16 (2010).CrossRefGoogle Scholar
  11. 11.
    K. Keyan, T. Ramachandran, O. L. Shumugasundaram, M. Balasubramaniam, and T. Ragavendra, J. Text. Apparel., Technol. Manage., 7, 1 (2012).Google Scholar
  12. 12.
    X. Gao, N. Han, X. Zhang, and W. Yu, J. Mater. Sci., 44, 5877 (2009).CrossRefGoogle Scholar
  13. 13.
    M. Leskovšek, G. Jedrinovic, and U. S. Elesini, Acta. Chim. Slov., 51, 699 (2004).Google Scholar
  14. 14.
    X. Zhang, X. Wang, X. Tao, and K. Yick, J. Mater. Sci., 40, 3729 (2005).CrossRefGoogle Scholar
  15. 15.
    N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).CrossRefGoogle Scholar
  16. 16.
    C. Chen, L. Wang, and Y. Huang, Polymer, 48, 5202 (2007).CrossRefGoogle Scholar
  17. 17.
    S.-X. Sun, R. Xie, X.-X. Wang, G.-Q. Wen, Z. Liu, W. Wang, X.-J. Ju, and L.-Y. Chu, J. Mater. Sci., 50, 5729 (2015).CrossRefGoogle Scholar
  18. 18.
    N. Sarier, R. Arat, Y. Menceloglu, E. Onder, E. C. Boz, and O. Oguz, Thermochim. Acta, 643, 83 (2016).CrossRefGoogle Scholar
  19. 19.
    Y. Cai, C. Gao, X. Xu, Z. Fu, X. Fei, Y. Zhao, Q. Chen, X. Liu, Q. Wei, G. He, and H. Fong, Sol. Energy Mat. Sol. C., 103, 53 (2012).CrossRefGoogle Scholar
  20. 20.
    Y. Cai, X. Xu, C. Gao, L. Wang, Q. Wei, L. Song, Y. Hu, H. Qiao, Y. Zhao, Q. Chen, and H. Fong, Fiber. Polym., 13, 837 (2012).CrossRefGoogle Scholar
  21. 21.
    Y. Yuan, N. Zhang, W. Tao, X. Cao, and Y. He, Renew. Sust. Energy Rev., 29, 482 (2014).CrossRefGoogle Scholar
  22. 22.
    S. I. Golestaneh, A. Mosallanejad, G. Karimi, M. Khorram, and M. Khashi, Appl. Energy, 182, 409 (2016).CrossRefGoogle Scholar
  23. 23.
    H. Ke, Fiber. Polym., 17, 1198 (2016).CrossRefGoogle Scholar
  24. 24.
    C. Chen, S. Liu, W. Liu, Y. Zhao, and Y. Lu, Sol. Energy Mat. Sol. C., 96, 202 (2012).CrossRefGoogle Scholar
  25. 25.
    L. C. Liston, Y. Farnam, M. Krafcik, J. Weiss, K. Erk, and B. Y. Tao, Appl. Therm. Eng., 96, 501 (2016).CrossRefGoogle Scholar
  26. 26.
    A. Sari, Energy Convers. Manage., 64, 68 (2012).CrossRefGoogle Scholar
  27. 27.
    K.C. Parsons, “Human Thermal Environments: The Effect of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance”, 3rd ed., pp.33–39, CRC Press, Boca Raton, FL, 2013.Google Scholar
  28. 28.
    E. Y. K. Ng, H. M. Tan, and E. H. Ooi, Burns, 35, 987 (2009).CrossRefGoogle Scholar
  29. 29.
    W. Chen and W. Weng, J. Appl. Polym. Sci., 134, 44949 (2017).Google Scholar
  30. 30.
    L. Yao, C. Lee, and J. Kim, Fiber. Polym., 11, 1032 (2010).CrossRefGoogle Scholar
  31. 31.
    K. Chen, S. Zhang, B. Liu, X. Mao, G. Sun, J. Yu, S. S. Al-Deyab, and B. Ding, RSC Adv., 4, 45760 (2014).CrossRefGoogle Scholar
  32. 32.
    W. Chen and W. Weng, Appl. Energy, 173, 168 (2016).CrossRefGoogle Scholar
  33. 33.
    X. Xu, X. Zhuang, X. Chen, X. Wang, L. Yang, and X. Jing, Macromol. Rapid Comm., 27, 1637 (2006).CrossRefGoogle Scholar
  34. 34.
    S. Villar-Rodil, A. Marti´nez-Alonso, and J. M. D. Tascón, J. Anal. Appl. Pyrol., 58-59, 105 (2001).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Weiwang Chen
    • 1
    • 2
  • Shunjiang Ni
    • 1
    • 2
  • Wenguo Weng
    • 1
    • 2
  • Ming Fu
    • 3
  1. 1.Department of Engineering Physics, Institute of Public Safety ResearchTsinghua UniversityBeijingPR China
  2. 2.Beijing Key Laboratory of City Integrated Emergency Response ScienceTsinghua UniversityBeijingPR China
  3. 3.Hefei Institute for Public Safety ResearchTsinghua UniversityHefei, Anhui ProvincePR China

Personalised recommendations