Advertisement

Fibers and Polymers

, Volume 19, Issue 3, pp 692–696 | Cite as

Effect of Pre-carbonization Temperature on the Properties of Plasticized Spinning Polyacrylonitrile Fibers

  • Xiang Li
  • Zhaoling Li
  • Xiaonan Dang
  • Dan Luan
  • Feng Wang
Communication

Abstract

In this work, plasticized spinning PAN fibers were treated at low carbonization temperature for the first time. The properties of treated fibers were characterized by elemental analysis (EA), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) respectively. The SEM results show that cross section of the pre-carbonized fibers is circular with no apparent skin-core structure. During the pre-carbonization process (320-380°C), fracture mode of the fibers gradually changes from ductile to brittle and fibril diameter gradually decreases. Pre-carbonization temperature at 350°C significantly accelerates chemical reactions. The FTIR results show that a stable oxygen structure is generated as treated at 320°C.

Keywords

Plasticized spinning Properties Pre-carbonization Reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Maddah and K. Nasouri, Fiber. Polym., 16, 2141 (2015).CrossRefGoogle Scholar
  2. 2.
    Q. S. Ma, A. J. Gao, Y. J. Tong, and Z. G. Zhang, Carbon, 31, 550 (2016).CrossRefGoogle Scholar
  3. 3.
    L.Q. Kong, H. Liu, W. Y. Cao, and L. H. Xu, Fiber. Polym., 15, 2480 (2014).CrossRefGoogle Scholar
  4. 4.
    M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, Polym. Degrad. Stabil., 92, 1421 (2007).CrossRefGoogle Scholar
  5. 5.
    N. Yusof and A. F. Ismail, J. Anal. Appl. Pyrol., 93, 1 (2012).CrossRefGoogle Scholar
  6. 6.
    B. A. Newcomb, Compos. Pt. A-Appl. Sci. Manuf., 91, 262 (2016).CrossRefGoogle Scholar
  7. 7.
    M. Jing, C. G. Wang, Q. Wang, Y. J. Bai, and B. Zhu, Polym. Degrad. Stabil., 92, 1737 (2007).CrossRefGoogle Scholar
  8. 8.
    W. X. Zhang, J. Liu, and G. Wu, Carbon, 41, 2805 (2003).CrossRefGoogle Scholar
  9. 9.
    T. H. Ko and T. C. Day, Polym. Compos., 15, 401 (1994).CrossRefGoogle Scholar
  10. 10.
    J. Liu, P. H. Wang, and R. Y. Li, J. Appl. Polym. Sci., 52, 945 (1994).CrossRefGoogle Scholar
  11. 11.
    S. P. Liu, K. Q. Han, L. Chen, Y. Zheng, M. H. Yu, J. Q. Li, and Z. Yang, Macromol. Mater. Eng., 300, 1001 (2015).CrossRefGoogle Scholar
  12. 12.
    S. P. Liu, K. Q. Han, L. Chen, Y. Zheng, and M. H. Yu, Polym. Eng. Sci., 55, 2722 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. C. Tian, K. G. Han, W. H. Zhang, J. J. Zhang, H. P. Rong, D. Wang, B. Yan, S. P. Liu, and M. H. Yu, Mater. Lett., 92, 119 (2013).CrossRefGoogle Scholar
  14. 14.
    S. P. Liu, K. Q. Han, L. Chen, Y. Zheng, and M. H. Yu, RSC Adv., 5, 37669 (2015).CrossRefGoogle Scholar
  15. 15.
    Y. X. Wang and Q. Wang, J. Appl. Polym. Sci., 104, 1255 (2007).CrossRefGoogle Scholar
  16. 16.
    E. Fitzer and A. K. Fiedler, Polym. Prepr., 14, 401 (1973).Google Scholar
  17. 17.
    A. Gupta and I. R. Harrison, Carbon, 34, 1427 (1996).CrossRefGoogle Scholar
  18. 18.
    M. Y. Wu, Q. Y. Wang, K. N. Li, Y. Q. Wu, and H. Q. Liu, Polym. Degrad. Stabil., 97, 1511 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Xiang Li
    • 1
    • 2
  • Zhaoling Li
    • 3
  • Xiaonan Dang
    • 4
  • Dan Luan
    • 1
  • Feng Wang
    • 1
  1. 1.Institute of Chemical and Materials EngineeringZhenjiang CollegeZhenjiang, JiangsuPR China
  2. 2.Zhenjiang Key Laboratory of Functional ChemistryZhenjiang, JiangsuPR China
  3. 3.Key Laboratory of Textile Science and Technology, Ministry of Education, College of TextilesDonghua UniversityShanghaiP.R. China
  4. 4.Zhenjiang Entry - Exit Inspection and Quarantine BureauZhenjiang, JiangsuPR China

Personalised recommendations