Fibers and Polymers

, Volume 19, Issue 3, pp 548–560 | Cite as

Treatment of Cotton by β-Cyclodextrin/Triclosan Inclusion Complex and Factors Affecting Antimicrobial Properties

  • Mikhail Novikov
  • Kwai Lin Thong
  • Nur Izzurianna Mohd Zazali
  • Sharifah Bee Abd Hamid


The efficacy of antimicrobial treatment of cotton fabrics depends on various parameters of the coating process, such as the chemical nature and concentration of the antimicrobial agent, the composition of the crosslinking formulation, and the curing temperature. The inclusion complex of triclosan with β-cyclodextrin (βCD) was synthesized and characterized by FTIR, XRD, NMR, Raman, SEM, and TGA. The minimum inhibitory concentration and minimum bactericidal concentration of the complex against Klebsiella pneumoniae and Staphylococcus aureus were compared to those of its precursor. A multifactorial study included an evaluation of the effects of triclosan complexation with β-cyclodextrin, a comparison between the glyoxal and tetracarboxylic acid as crosslinkers, an investigation of the effect of crosslinker and catalyst concentrations, and a comparison of curing at 120°C and 180°C. The cotton was characterized by FTIR-ATR, the micrographs of treated samples were obtained by SEM and the weight add-on was calculated. The bactericidal properties were determined according to AATCC-147. The correlation between the coating process parameters and the antimicrobial efficacy was determined. The optimal combination leading to the highest weight add-on and the antimicrobial coating that was most durable to multiple detergent washes at an elevated temperature was the use of complexed triclosan grafted onto the cotton in the presence of tetracarboxylic acid, followed by curing at 180°C. The curing temperatures were 120°C (P=0.002) and 180°C (P=0.008), catalysts were 1 % and 2 % aluminium sulfate and sodium hypophosphite (P<0.001), and the crosslinkers were 5 % and 10 % glyoxal and butanetetracarboxylic acid (P<0.001); these parameters significantly enhanced the antimicrobial properties of the treated fabrics. The study showed that βCD did not have antimicrobial activity, while the βCD/triclosan-treated textile exhibited potential antimicrobial properties. Overall, the bactericidal activity of fabrics can be enhanced by using βCD/triclosan with 10 % butanetetracarboxylic acid as a cross-linker and 5 % sodium hypophosphite as a catalyst at a curing temperature of 180°C.


Cotton Cyclodextrin Triclosan Crosslinker Antimicrobial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Paulus, “Directory of Microbicides for the Protection of Materials”, Springer Science & Business Media, 2005.CrossRefGoogle Scholar
  2. 2.
    A. S. Ranganath and A. K. Sarkar, J. Text., 2014, http:// (2014).Google Scholar
  3. 3.
    M. Orhan, D. Kut, and C. Gunesoglu, Ind. J. Fibre Text. Res., 32, 114 (2007).Google Scholar
  4. 4.
    M. Orhan, D. Kut, and C. Gunesoglu, J. Appl. Polym. Sci., 111, 1344 (2009).CrossRefGoogle Scholar
  5. 5.
    S. Sharaf, A. Higazy, A. T. El Aref, and R. Refai, Int. J. Adv. Res., 3, 589 (2015).Google Scholar
  6. 6.
    L. Cabrales, N. Abidi, A. Hammond, and A. Hamood, J. Mater. Environ. Sci., 3, 561 (2012).Google Scholar
  7. 7.
    R. Peila, C. Vineis, A. Varesano, and A. Ferri, Cellulose, 20, 2115 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Lu, M. A. Hill, M. Hood, D. F. Greeson, J. R. Horton, P. E. Orndorff, A. S. Herndon, and A. E. Tonelli, J. Appl. Polym. Sci., 82, 300 (2001).CrossRefGoogle Scholar
  9. 9.
    F. Kayaci, O. C. Umu, T. Tekinay, and T. Uyar, J. Agri. Food Chem., 61, 3901 (2013).CrossRefGoogle Scholar
  10. 10.
    A. Celebioglu, O. C. Umu, T. Tekinay, and T. Uyar, Colloids & Surfaces B: Biointerfaces, 116, 612 (2014).CrossRefGoogle Scholar
  11. 11.
    T. Loftsson, Í. B. Össurardóttir, T. Thorsteinsson, M. Duan, and M. Másson, J. Incl. Phenom. Macrocycl. Chem., 52, 109 (2005).CrossRefGoogle Scholar
  12. 12.
    T. Loftsson, N. Leeves, B. Bjornsdottir, L. Duffy, and M. Masson, J. Pharm. Sci., 88, 1254 (1999).CrossRefGoogle Scholar
  13. 13.
    M. Jug, I. Kosalec, F. Maestrelli, and P. Mura, J. Pharma. Biomed. Anal., 54, 1030 (2011).CrossRefGoogle Scholar
  14. 14.
    M. Fidaleo, A. Zuorro, and R. Lavecchia, World J. Microbiol. Biotechnol., 29, 1731 (2013).CrossRefGoogle Scholar
  15. 15.
    A. I. Ramos, T. M. Braga, J. A. Fernandes, P. Silva, P. J. Ribeiro-Claro, F. A. A. Paz, M. d. F. S. Lopes, and S. S. Braga, J. Pharma. Biomed. Anal., 80, 34 (2013).CrossRefGoogle Scholar
  16. 16.
    S. Srithongkham, W. Sokhuma, P. Udomkusonsri, and A. Lertworasirikul, Macromol. Symp., 42, 354 (2015).Google Scholar
  17. 17.
    J. Du Preez and W. Yang, J. Cosmet. Sci., 54, 537 (2003).Google Scholar
  18. 18.
    M. Veiga, M. Merino, M. Cirri, F. Maestrelli, and P. Mura, J. Incl. Phenom. Macrocycl. Chem., 53, 77 (2005).CrossRefGoogle Scholar
  19. 19.
    C.-D. Radu, O. Parteni, and L. Ochiuz, J. Control. Release, 224, 146 (2016).CrossRefGoogle Scholar
  20. 20.
    S. Sharaf, A. Higazy, and A. Hebeish, Int. J. Biol. Macromol., 59, 408 (2013).CrossRefGoogle Scholar
  21. 21.
    S. Kittinaovarat, P. Kantuptim, and T. Singhaboonponp, J. Appl. Polym. Sci., 100, 1372 (2006).CrossRefGoogle Scholar
  22. 22.
    K. F. El-Tahlawy, M. A. El-Bendary, A. G. Elhendawy, and S. M. Hudson, Carbohydr. Polym., 60, 421 (2005).CrossRefGoogle Scholar
  23. 23.
    Z. M. Liu, J. Lin, D. H. Cheng, and Y. H. Lu, Appl. Mech. Mater., 76, 685 (2014).CrossRefGoogle Scholar
  24. 24.
    A. Hebeish, F. Abdel-Mohdy, M. M. Fouda, Z. Elsaid, S. Essam, G. Tammam, and E. A. Drees, Carbohydr. Polym., 86, 1684 (2011).CrossRefGoogle Scholar
  25. 25.
    M. Montazer and M. G. Afjeh, J. Appl. Polym. Sci., 103, 178 (2007).CrossRefGoogle Scholar
  26. 26.
    E. S. Bang, E. S. Lee, S. I. Kim, Y. H. Yu, and S. E. Bae, J. Appl. Polym. Sci., 106, 938 (2007).CrossRefGoogle Scholar
  27. 27.
    “Antibacterial Activity Assessment of Textile Materials: Parallel Streak Method”, AATCC Technical Manual, Vol. 85, p.251, 2010.Google Scholar
  28. 28.
    K. Connors and T. Higuchi, Adv. Anal. Chem. Instrum., 4, 117 (1965).Google Scholar
  29. 29.
    F. Gómez-Galván, L. Pérez-Álvarez, J. Matas, A. Álvarez-Bautista, J. Poejo, C. M. Duarte, L. Ruiz-Rubio, J. L. Vila-Vilela, and L. M. León, Carbohydr. Polym., 142, 149 (2016).CrossRefGoogle Scholar
  30. 30.
    J. Du Preez and W. Yang, J. Cosmet. Sci., 54, 537 (2003).Google Scholar
  31. 31.
    B. P. Etherton and D. C. Mcfaddin, US Patent, 7019073 B2 (2005).Google Scholar
  32. 32.
    “Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard”, Clin. Lab. Standards Inst. M2-A9, Vol. 26, No. 1, 2006.Google Scholar
  33. 33.
    C. Mann and J. Markham, J. Appl. Microbiol., 84, 538 (1998).CrossRefGoogle Scholar
  34. 34.
    L. Qian, Y. Guan, and H. Xiao, Int. J. Pharma., 357, 244 (2008).CrossRefGoogle Scholar
  35. 35.
    A. Hebeish, S. Sharaf, R. Refaie, and A. El Shafei, Res. J. Text. Apparel, 16, 68 (2012).CrossRefGoogle Scholar
  36. 36.
    B. Voncina and A. M. Le Marechal, J. Appl. Polym. Sci., 96, 1323 (2005).CrossRefGoogle Scholar
  37. 37.
    U. R. Bhaskara, A. Tourrette, D. Jocic, and M. M. Warmoeskerken, AATCC J. Res., 1, 28 (2014).CrossRefGoogle Scholar
  38. 38.
    H. M. Choi, J. H. Kim, and S. Shin, J. Appl. Polym. Sci., 73, 2691 (1999).CrossRefGoogle Scholar
  39. 39.
    J. H. Park, H.-M. Choi, and K. W. Oh, Cellulose, 21, 3107 (2014).CrossRefGoogle Scholar
  40. 40.
    F. S. H. Head, J. Tex. Inst. Transac., 49, T345 (1958).CrossRefGoogle Scholar
  41. 41.
    C. Chung, M. Lee, and E. K. Choe, Carbohyr. Polym., 58, 417 (2004).CrossRefGoogle Scholar
  42. 42.
    S. M. Iconomopoulou and G. A. Voyiatzis, J. Control. Release, 103, 451 (2005).CrossRefGoogle Scholar
  43. 43.
    S. M. Iconomopoulou, A. K. Andreopoulou, A. Soto, J. K. Kallitsis, and G. A. Voyiatzis, J. Control. Release, 102, 223 (2005).CrossRefGoogle Scholar
  44. 44.
    G. P. Blanch, M. L. Ruiz del Castillo, M. del Mar Caja, M. Pérez-Méndez, and S. Sánchez-Cortés, Food Chem., 105, 1335 (2007).CrossRefGoogle Scholar
  45. 45.
    L. X. Song, J. Yang, L. Bai, F. Y. Du, J. Chen, and M. Wang, Inorg. Chem., 50, 1682 (2011).CrossRefGoogle Scholar
  46. 46.
    K. A. Wilson and J. J. Beck, Chem. Edu., 12, 338 (2007).Google Scholar
  47. 47.
    S. Kinugasa, K. Tanabe, and T. Tamura, “Spectral Database for Organic Compounds, SDBS”, National Institute of Advanced Industrial Science and Technology (AIST): Japan, 2009.Google Scholar
  48. 48.
    M. Suller and A. Russell, J. Antimicrob. Chemother., 46, 11 (2000).CrossRefGoogle Scholar
  49. 49.
    O. Assadian, K. Wehse, N.-O. Hübner, T. Koburger, S. Bagel, F. Jethon, and A. Kramer, GMS Krankenhaushygiene Interdisziplinär, 6, 1 (2011).Google Scholar
  50. 50.
    T. Koburger, N.-O. Hübner, M. Braun, J. Siebert, and A. Kramer, J. Antimicrob. Chemother., 65, 1712 (2010).CrossRefGoogle Scholar
  51. 51.
    S. Forbes, C. B. Dobson, G. J. Humphreys, and A. J. McBain, Antimicrob. Agents Chemother., 58, 5809 (2014).CrossRefGoogle Scholar
  52. 52.
    G. L. Jones, C. Muller, M. O'Reilly, and D. Stickler, J. Antimicrob. Chemother., 57, 266 (2006).CrossRefGoogle Scholar
  53. 53.
    A. E. Aiello, B. Marshall, S. B. Levy, P. Della-Latta, and E. Larson, Antimicrob. Agents Chemother., 48, 2973 (2004).CrossRefGoogle Scholar
  54. 54.
    G. J. Williams and D. J. Stickler, J. Med. Microbiol., 57, 1135 (2008).CrossRefGoogle Scholar
  55. 55.
    K. H. Hong and G. Sun, Carbohydr. Polym., 71, 598 (2008).CrossRefGoogle Scholar
  56. 56.
    E. Abdel-Halim, S. S. Al-Deyab, and A. Y. Alfaifi, Carbohydr. Polym., 102, 550 (2014).CrossRefGoogle Scholar
  57. 57.
    A. Farouk, S. Sharaf, and M. A. El-Hady, Int. J. Biol. Macromol., 61, 230 (2013).CrossRefGoogle Scholar
  58. 58.
    H. Awada, M. Bouatmane, and C. Daneault, Heliyon, 1, e00038 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mikhail Novikov
    • 1
  • Kwai Lin Thong
    • 2
  • Nur Izzurianna Mohd Zazali
    • 2
  • Sharifah Bee Abd Hamid
    • 1
  1. 1.Nanotechnology & Catalysis Research Centre, Institute of Graduate StudiesUniversity of MalayaLembah Pantai, Kuala LumpurMalaysia
  2. 2.Microbiology Unit, Institute of Biological Science, Faculty of ScienceUniversity of MalayaLembah Pantai, Kuala LumpurMalaysia

Personalised recommendations