Skip to main content
Log in

Treatment of Cotton by β-Cyclodextrin/Triclosan Inclusion Complex and Factors Affecting Antimicrobial Properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The efficacy of antimicrobial treatment of cotton fabrics depends on various parameters of the coating process, such as the chemical nature and concentration of the antimicrobial agent, the composition of the crosslinking formulation, and the curing temperature. The inclusion complex of triclosan with β-cyclodextrin (βCD) was synthesized and characterized by FTIR, XRD, NMR, Raman, SEM, and TGA. The minimum inhibitory concentration and minimum bactericidal concentration of the complex against Klebsiella pneumoniae and Staphylococcus aureus were compared to those of its precursor. A multifactorial study included an evaluation of the effects of triclosan complexation with β-cyclodextrin, a comparison between the glyoxal and tetracarboxylic acid as crosslinkers, an investigation of the effect of crosslinker and catalyst concentrations, and a comparison of curing at 120°C and 180°C. The cotton was characterized by FTIR-ATR, the micrographs of treated samples were obtained by SEM and the weight add-on was calculated. The bactericidal properties were determined according to AATCC-147. The correlation between the coating process parameters and the antimicrobial efficacy was determined. The optimal combination leading to the highest weight add-on and the antimicrobial coating that was most durable to multiple detergent washes at an elevated temperature was the use of complexed triclosan grafted onto the cotton in the presence of tetracarboxylic acid, followed by curing at 180°C. The curing temperatures were 120°C (P=0.002) and 180°C (P=0.008), catalysts were 1 % and 2 % aluminium sulfate and sodium hypophosphite (P<0.001), and the crosslinkers were 5 % and 10 % glyoxal and butanetetracarboxylic acid (P<0.001); these parameters significantly enhanced the antimicrobial properties of the treated fabrics. The study showed that βCD did not have antimicrobial activity, while the βCD/triclosan-treated textile exhibited potential antimicrobial properties. Overall, the bactericidal activity of fabrics can be enhanced by using βCD/triclosan with 10 % butanetetracarboxylic acid as a cross-linker and 5 % sodium hypophosphite as a catalyst at a curing temperature of 180°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Paulus, “Directory of Microbicides for the Protection of Materials”, Springer Science & Business Media, 2005.

    Book  Google Scholar 

  2. A. S. Ranganath and A. K. Sarkar, J. Text., 2014, http:// dx.doi.org/10.1155/2014/812303 (2014).

  3. M. Orhan, D. Kut, and C. Gunesoglu, Ind. J. Fibre Text. Res., 32, 114 (2007).

    CAS  Google Scholar 

  4. M. Orhan, D. Kut, and C. Gunesoglu, J. Appl. Polym. Sci., 111, 1344 (2009).

    Article  CAS  Google Scholar 

  5. S. Sharaf, A. Higazy, A. T. El Aref, and R. Refai, Int. J. Adv. Res., 3, 589 (2015).

    Google Scholar 

  6. L. Cabrales, N. Abidi, A. Hammond, and A. Hamood, J. Mater. Environ. Sci., 3, 561 (2012).

    CAS  Google Scholar 

  7. R. Peila, C. Vineis, A. Varesano, and A. Ferri, Cellulose, 20, 2115 (2013).

    Article  CAS  Google Scholar 

  8. J. Lu, M. A. Hill, M. Hood, D. F. Greeson, J. R. Horton, P. E. Orndorff, A. S. Herndon, and A. E. Tonelli, J. Appl. Polym. Sci., 82, 300 (2001).

    Article  CAS  Google Scholar 

  9. F. Kayaci, O. C. Umu, T. Tekinay, and T. Uyar, J. Agri. Food Chem., 61, 3901 (2013).

    Article  CAS  Google Scholar 

  10. A. Celebioglu, O. C. Umu, T. Tekinay, and T. Uyar, Colloids & Surfaces B: Biointerfaces, 116, 612 (2014).

    Article  CAS  Google Scholar 

  11. T. Loftsson, Í. B. Össurardóttir, T. Thorsteinsson, M. Duan, and M. Másson, J. Incl. Phenom. Macrocycl. Chem., 52, 109 (2005).

    Article  CAS  Google Scholar 

  12. T. Loftsson, N. Leeves, B. Bjornsdottir, L. Duffy, and M. Masson, J. Pharm. Sci., 88, 1254 (1999).

    Article  CAS  Google Scholar 

  13. M. Jug, I. Kosalec, F. Maestrelli, and P. Mura, J. Pharma. Biomed. Anal., 54, 1030 (2011).

    Article  CAS  Google Scholar 

  14. M. Fidaleo, A. Zuorro, and R. Lavecchia, World J. Microbiol. Biotechnol., 29, 1731 (2013).

    Article  CAS  Google Scholar 

  15. A. I. Ramos, T. M. Braga, J. A. Fernandes, P. Silva, P. J. Ribeiro-Claro, F. A. A. Paz, M. d. F. S. Lopes, and S. S. Braga, J. Pharma. Biomed. Anal., 80, 34 (2013).

    Article  CAS  Google Scholar 

  16. S. Srithongkham, W. Sokhuma, P. Udomkusonsri, and A. Lertworasirikul, Macromol. Symp., 42, 354 (2015).

    Google Scholar 

  17. J. Du Preez and W. Yang, J. Cosmet. Sci., 54, 537 (2003).

    Google Scholar 

  18. M. Veiga, M. Merino, M. Cirri, F. Maestrelli, and P. Mura, J. Incl. Phenom. Macrocycl. Chem., 53, 77 (2005).

    Article  CAS  Google Scholar 

  19. C.-D. Radu, O. Parteni, and L. Ochiuz, J. Control. Release, 224, 146 (2016).

    Article  CAS  Google Scholar 

  20. S. Sharaf, A. Higazy, and A. Hebeish, Int. J. Biol. Macromol., 59, 408 (2013).

    Article  CAS  Google Scholar 

  21. S. Kittinaovarat, P. Kantuptim, and T. Singhaboonponp, J. Appl. Polym. Sci., 100, 1372 (2006).

    Article  CAS  Google Scholar 

  22. K. F. El-Tahlawy, M. A. El-Bendary, A. G. Elhendawy, and S. M. Hudson, Carbohydr. Polym., 60, 421 (2005).

    Article  CAS  Google Scholar 

  23. Z. M. Liu, J. Lin, D. H. Cheng, and Y. H. Lu, Appl. Mech. Mater., 76, 685 (2014).

    Article  Google Scholar 

  24. A. Hebeish, F. Abdel-Mohdy, M. M. Fouda, Z. Elsaid, S. Essam, G. Tammam, and E. A. Drees, Carbohydr. Polym., 86, 1684 (2011).

    Article  CAS  Google Scholar 

  25. M. Montazer and M. G. Afjeh, J. Appl. Polym. Sci., 103, 178 (2007).

    Article  CAS  Google Scholar 

  26. E. S. Bang, E. S. Lee, S. I. Kim, Y. H. Yu, and S. E. Bae, J. Appl. Polym. Sci., 106, 938 (2007).

    Article  CAS  Google Scholar 

  27. “Antibacterial Activity Assessment of Textile Materials: Parallel Streak Method”, AATCC Technical Manual, Vol. 85, p.251, 2010.

  28. K. Connors and T. Higuchi, Adv. Anal. Chem. Instrum., 4, 117 (1965).

    Google Scholar 

  29. F. Gómez-Galván, L. Pérez-Álvarez, J. Matas, A. Álvarez-Bautista, J. Poejo, C. M. Duarte, L. Ruiz-Rubio, J. L. Vila-Vilela, and L. M. León, Carbohydr. Polym., 142, 149 (2016).

    Article  Google Scholar 

  30. J. Du Preez and W. Yang, J. Cosmet. Sci., 54, 537 (2003).

    Google Scholar 

  31. B. P. Etherton and D. C. Mcfaddin, US Patent, 7019073 B2 (2005).

    Google Scholar 

  32. “Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard”, Clin. Lab. Standards Inst. M2-A9, Vol. 26, No. 1, 2006.

  33. C. Mann and J. Markham, J. Appl. Microbiol., 84, 538 (1998).

    Article  CAS  Google Scholar 

  34. L. Qian, Y. Guan, and H. Xiao, Int. J. Pharma., 357, 244 (2008).

    Article  CAS  Google Scholar 

  35. A. Hebeish, S. Sharaf, R. Refaie, and A. El Shafei, Res. J. Text. Apparel, 16, 68 (2012).

    Article  CAS  Google Scholar 

  36. B. Voncina and A. M. Le Marechal, J. Appl. Polym. Sci., 96, 1323 (2005).

    Article  CAS  Google Scholar 

  37. U. R. Bhaskara, A. Tourrette, D. Jocic, and M. M. Warmoeskerken, AATCC J. Res., 1, 28 (2014).

    Article  CAS  Google Scholar 

  38. H. M. Choi, J. H. Kim, and S. Shin, J. Appl. Polym. Sci., 73, 2691 (1999).

    Article  CAS  Google Scholar 

  39. J. H. Park, H.-M. Choi, and K. W. Oh, Cellulose, 21, 3107 (2014).

    Article  CAS  Google Scholar 

  40. F. S. H. Head, J. Tex. Inst. Transac., 49, T345 (1958).

    Article  CAS  Google Scholar 

  41. C. Chung, M. Lee, and E. K. Choe, Carbohyr. Polym., 58, 417 (2004).

    Article  CAS  Google Scholar 

  42. S. M. Iconomopoulou and G. A. Voyiatzis, J. Control. Release, 103, 451 (2005).

    Article  CAS  Google Scholar 

  43. S. M. Iconomopoulou, A. K. Andreopoulou, A. Soto, J. K. Kallitsis, and G. A. Voyiatzis, J. Control. Release, 102, 223 (2005).

    Article  CAS  Google Scholar 

  44. G. P. Blanch, M. L. Ruiz del Castillo, M. del Mar Caja, M. Pérez-Méndez, and S. Sánchez-Cortés, Food Chem., 105, 1335 (2007).

    Article  CAS  Google Scholar 

  45. L. X. Song, J. Yang, L. Bai, F. Y. Du, J. Chen, and M. Wang, Inorg. Chem., 50, 1682 (2011).

    Article  CAS  Google Scholar 

  46. K. A. Wilson and J. J. Beck, Chem. Edu., 12, 338 (2007).

    CAS  Google Scholar 

  47. S. Kinugasa, K. Tanabe, and T. Tamura, “Spectral Database for Organic Compounds, SDBS”, National Institute of Advanced Industrial Science and Technology (AIST): Japan, 2009.

    Google Scholar 

  48. M. Suller and A. Russell, J. Antimicrob. Chemother., 46, 11 (2000).

    Article  CAS  Google Scholar 

  49. O. Assadian, K. Wehse, N.-O. Hübner, T. Koburger, S. Bagel, F. Jethon, and A. Kramer, GMS Krankenhaushygiene Interdisziplinär, 6, 1 (2011).

    Google Scholar 

  50. T. Koburger, N.-O. Hübner, M. Braun, J. Siebert, and A. Kramer, J. Antimicrob. Chemother., 65, 1712 (2010).

    Article  CAS  Google Scholar 

  51. S. Forbes, C. B. Dobson, G. J. Humphreys, and A. J. McBain, Antimicrob. Agents Chemother., 58, 5809 (2014).

    Article  Google Scholar 

  52. G. L. Jones, C. Muller, M. O'Reilly, and D. Stickler, J. Antimicrob. Chemother., 57, 266 (2006).

    Article  CAS  Google Scholar 

  53. A. E. Aiello, B. Marshall, S. B. Levy, P. Della-Latta, and E. Larson, Antimicrob. Agents Chemother., 48, 2973 (2004).

    Article  CAS  Google Scholar 

  54. G. J. Williams and D. J. Stickler, J. Med. Microbiol., 57, 1135 (2008).

    Article  CAS  Google Scholar 

  55. K. H. Hong and G. Sun, Carbohydr. Polym., 71, 598 (2008).

    Article  CAS  Google Scholar 

  56. E. Abdel-Halim, S. S. Al-Deyab, and A. Y. Alfaifi, Carbohydr. Polym., 102, 550 (2014).

    Article  CAS  Google Scholar 

  57. A. Farouk, S. Sharaf, and M. A. El-Hady, Int. J. Biol. Macromol., 61, 230 (2013).

    Article  CAS  Google Scholar 

  58. H. Awada, M. Bouatmane, and C. Daneault, Heliyon, 1, e00038 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwai Lin Thong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, M., Thong, K.L., Zazali, N.I.M. et al. Treatment of Cotton by β-Cyclodextrin/Triclosan Inclusion Complex and Factors Affecting Antimicrobial Properties. Fibers Polym 19, 548–560 (2018). https://doi.org/10.1007/s12221-018-7028-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7028-3

Keywords

Navigation