Advertisement

Fibers and Polymers

, Volume 18, Issue 10, pp 1841–1847 | Cite as

Preparation of bio-polyurethane using castor oil and antibacterial hybrid films thereof with silver-doped hydroxyapatite

Article
  • 66 Downloads

Abstract

The hybrid films of bio-polyurethane (Bio-PU) and silver-doped hydroxyapatite (HA-Ag) for breathable and antibacterial textile applications. The Bio-PU was synthesized using a mixture of castor oil based polyol with petroleum based poly(ethylene glycol). Silver doping to hydroxyapatite(HA) was carried out through ion exchange mechanism between calcium ion in HA and silver ion (Ag+) in aqueous solution of AgNO3. The concentration of Ag+ was controlled to 100-300 ppm. The existence of silver in HA was proved using SEM-EDS while the silver doping amount was estimated by measuring residual concentration of Ag+ after doping using ICP-OES. It was found that the hybrid films exhibited excellent antibacterial activity against bacteria of S. aureus and K. pneumonia by showing 99.9 % reduction of bacteria.

Keywords

Biomass-based polyol Castor oil Bio-polyurethane Hydroxyapatite Silver doping Antibacterial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Xia and R. C. Larock, Green Chem., 12, 1893 (2010).CrossRefGoogle Scholar
  2. 2.
    C. K. Williams and M. A. Hillmyer, Polym. Rev., 48, 1 (2008).CrossRefGoogle Scholar
  3. 3.
    M. A. Alaa, K. Yusoh, and S. F. Hasany, J. Mech. Eng. Sci., 8, 1507 (2015).CrossRefGoogle Scholar
  4. 4.
    I. Javni, Z. S. Petrovic, A. Guo, and R. Fuller, J. Appl. Polym. Sci., 77, 1723 (2000).CrossRefGoogle Scholar
  5. 5.
    I. Javni, W. Zhang, and Z. S. Petrovi, J. Appl. Polym. Sci., 88, 2912 (2003).CrossRefGoogle Scholar
  6. 6.
    J. John, M. Bhattacharya, and R. B. Turner, J. Appl. Polym. Sci., 86, 3097 (2002).CrossRefGoogle Scholar
  7. 7.
    K. C. Pradhan and P. Nayak, Adv. Appl. Sci. Res., 3, 3045 (2012).Google Scholar
  8. 8.
    L. T. Yang, C. S. Zhao, C. L. Dai, L. Y. Fu, and S. Q. Lin, J. Polym. Environ., 20, 230 (2012).CrossRefGoogle Scholar
  9. 9.
    C. W. Shan, M. I. Ghazali, and M. I. Idris, J. Auto. Mech. Eng., 7, 1031 (2013).CrossRefGoogle Scholar
  10. 10.
    O. Saravari and S. Praditvatanakit, Prog. Org. Coat., 76, 698 (2013).CrossRefGoogle Scholar
  11. 11.
    D. Vashist and M. Ahmad, Int. J. Auto. Mech. Eng., 10, 2155 (2014).CrossRefGoogle Scholar
  12. 12.
    H. C. Cha and Y. H. Kim, Text. Sci. Eng., 45, 214 (2008).Google Scholar
  13. 13.
    M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv., 27, 76 (2009).CrossRefGoogle Scholar
  14. 14.
    S. H. Jeong, S. Y. Yeo, and S. C. Yi, J. Mater. Sci., 40, 5407 (2005).CrossRefGoogle Scholar
  15. 15.
    D. H. Lee and B. G. Min, Fiber. Polym., 15, 1921 (2014).CrossRefGoogle Scholar
  16. 16.
    X. Wang and B. G. Min, J. Sol-Gel Sci. Technol., 43, 99 (2007).CrossRefGoogle Scholar
  17. 17.
    X. Wang and B. G. Min, J. Sol-Gel Sci. Technol., 45, 17 (2008).CrossRefGoogle Scholar
  18. 18.
    X. Wang, J. H. Kim, and B. G. Min, Fiber. Polym., 9, 263 (2008).CrossRefGoogle Scholar
  19. 19.
    X. Wang and B. G. Min, Rev. Roum. Chim., 55, 443 (2010).Google Scholar
  20. 20.
    S. T. Ramesh, N. Rameshbabu, R. Gandhimathi, P. V. Nidheesh, and M. Srikanth Kumar, Appl. Water Sci., 2, 187 (2012).CrossRefGoogle Scholar
  21. 21.
    Z. Evisa, B. Yilmazb, M. Ustac, and A. L. Aktugc, Ceram. Int., 39, 2359 (2013).CrossRefGoogle Scholar
  22. 22.
    D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969).CrossRefGoogle Scholar
  23. 23.
    A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, and R. Zboril, J. Phys. Chem. B, 100, 16248 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Materials and Design EngineeringKumoh National Institute of TechnologyGumiKorea

Personalised recommendations