Fibers and Polymers

, Volume 18, Issue 10, pp 2005–2017 | Cite as

Analysis and prediction of air permeability of woven barrier fabrics with respect to material, fabric construction and process parameters

  • Samander Ali Malik
  • Recep Türkay Kocaman
  • Hatice Kübra Kaynak
  • Thomas Gereke
  • Dilbar Aibibu
  • Osman Babaarslan
  • Chokri Cherif
Article
  • 28 Downloads

Abstract

Air permeability is one of the important properties of conventional as well as technical fabrics such as protective garments, filters, and fabrics for airbags and parachutes. In case of surgical textiles, air permeability is an effective measure of thermo-physiological comfort. This study is aimed to analyze PES barrier fabrics and to develop correlation between permeability and influential material, construction and process parameters. Not only the individual effects of yarn, fabric and loom parameters but also the underlying complex interactions between fewer or several of these influencing factors exert significant influence on fabric porosity and permeability. Artificial neural network (ANN) is the suitable tool to map such complex input-output relationships, since a direct analytical solution is not possible. Feedforward neural network models were trained with combination of Levenberg-Marquardt algorithm and Bayesian regularization support incorporated in backpropagation. Based on the number of input variables, three ANN models were optimized. It was observed that the model which was trained with all selected inputs delivered promising results on test data, i.e., R2=0.985 and mean absolute error of 1.8%. To eliminate any doubt of overfitting, 10 % cross-validation was also performed for selected final model. Furthermore, to investigate the relative importance of input variables in the optimized ANN model, the rank analysis was also carried out. Research outcomes reveal that ANN can be used to tailor barrier fabric permeability depending on the requirements quickly without trials and error by adjusting loom, fabric and yarn parameters.

Keywords

Neural network Modelling Air permeability Porosity Barrier fabrics Prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. L. Belkin, Tech. Text. Int., 1, 22 (1993).Google Scholar
  2. 2.
    B. K. Behera and H. Arora, J. Ind. Text., 38, 205 (2009).CrossRefGoogle Scholar
  3. 3.
    T. K. S. Wong, J. W. Y. Chung, Y. Li, W. F. Chan, P. T. Y. Ching, C. H. S. Lam, C. B. Chow, and W. H. Seto, Am. J. Infect. Control, 32, 90 (2004).CrossRefGoogle Scholar
  4. 4.
    A. Pezzin, “Thermo-Physiological Comfort Modelling of Fabrics and Garments”, Politecnico di Torino, PhD Thesis, 2015.Google Scholar
  5. 5.
    M. Havlová, Fibres Text. East. Eur., 21, 84 (2013).Google Scholar
  6. 6.
    S. Backer, Text. Res. J., 21, 703 (1951).CrossRefGoogle Scholar
  7. 7.
    E. Laourine and C. Cherif, Autex Res. J., 11, 31 (2011).Google Scholar
  8. 8.
    K. K. Leonas, Am. J. Infect. Control, 26, 495 (1998).CrossRefGoogle Scholar
  9. 9.
    A. Das and S. M. Ishtiaque, J. Text. Apparel, Technol. Manag., 3, 1 (2004).Google Scholar
  10. 10.
    M. Kuhr, D. Aibibu, and C. Cherif, J. Ind. Text., 45, 853 (2016).CrossRefGoogle Scholar
  11. 11.
    D. Aibibu, “Charakterisierung, Modellierung Und Optimierung Der Barriereeigenschaften von OP-Textilien”, Technische Universität Dresden, PhD Thesis, 2005.Google Scholar
  12. 12.
    H. K. Kaynak and O. Babaarslan in “Woven Fabr”, (H.-Y. Jeon Ed.), pp.155–178, Intech, 2011.Google Scholar
  13. 13.
    Z. Zupin, A. Hladnik, and K. Dimitrovski, Text. Res. J., 82, 117 (2012).CrossRefGoogle Scholar
  14. 14.
    T. Wolters, Ph. D. Dissertation, RWTH Aachen, 2003.Google Scholar
  15. 15.
    B. K. Behera and M. P. Mani, Indian J. Fiber Text. Res., 32, 421 (2007).Google Scholar
  16. 16.
    Z. A. Malik, N. Haleem, M. H. Malik, and A. Tanwari, Fiber. Polym., 13, 1094 (2012).CrossRefGoogle Scholar
  17. 17.
    F. S. Hänsch, T. Gries, and M. S. Amabile, Melliand Int., 10, 39 (2004).Google Scholar
  18. 18.
    B. K. Behera and Y. Goyal, J. Ind. Text., 39, 45 (2009).CrossRefGoogle Scholar
  19. 19.
    N. Haleem, Z. A. Malik, M. H. Malik, T. Hussain, Q. Gillani, and A. Rehman, Fiber. Polym., 14, 1172 (2013).CrossRefGoogle Scholar
  20. 20.
    M. Tokarska, Text. Res. J., 74, 1045 (2004).CrossRefGoogle Scholar
  21. 21.
    A. Çay, S. Vassiliadis, M. Rangoussi, and I. Tarakçioglu, Int. J. Cloth. Sci. Technol., 19, 18 (2007).CrossRefGoogle Scholar
  22. 22.
    F. Walz and J. Luibrand, Text. Prax., 2, 330 (1947).Google Scholar
  23. 23.
    S. Haykin, “Neural Networks: A Comprehensive Foundation”, Prentice Hall, 1999.Google Scholar
  24. 24.
    O. Nelles, “Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models”, 1st ed., Springer-Verlag Berlin Heidelberg, 2001.CrossRefGoogle Scholar
  25. 25.
    M. T. Hagan and M. B. Menhaj, IEEE Trans. Neural Networks, 5, 989 (1994).CrossRefGoogle Scholar
  26. 26.
    D. W. Marquardt, J. Soc. Ind. Appl. Math., 11, 431 (1963).CrossRefGoogle Scholar
  27. 27.
    B. M. Wilamowski, S. Iplikci, O. Kaynak, and M. O. Efe, Proceedings. IJCNN’ 01. Int. Jt. Conf. Neural Networks, pp.1778–1782, 2001.Google Scholar
  28. 28.
    D. J. C. MacKay, Neural Comput., 4, 415 (1992).CrossRefGoogle Scholar
  29. 29.
    S. K. Neogi, “Role of Yarn Tension in Weaving”, Woodhead Publishing India, 2015.Google Scholar
  30. 30.
    B. M. D. Dauda and M. P. U. Bandara, Indian J. Fibre Text. Res., 29, 339 (2004).Google Scholar
  31. 31.
    V. K. Midha, R. Vashisht, and V. Midha, Fash. Text., 1, 12 (2014).CrossRefGoogle Scholar
  32. 32.
    P. K. Majumdar and A. Majumdar, Text. Res. J., 74, 652 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Samander Ali Malik
    • 1
    • 2
  • Recep Türkay Kocaman
    • 1
  • Hatice Kübra Kaynak
    • 3
  • Thomas Gereke
    • 1
  • Dilbar Aibibu
    • 1
  • Osman Babaarslan
    • 4
  • Chokri Cherif
    • 1
  1. 1.Institute of Textile Machinery and High Performance Material TechnologyTechnische Universität DresdenDresdenGermany
  2. 2.Department of Textile EngineeringMehran University of Engineering & TechnologyJamshoroPakistan
  3. 3.Textile Engineering DepartmentGaziantep UniversityGaziantepTurkey
  4. 4.Textile Engineering DepartmentÇukurova UniversityAdanaTurkey

Personalised recommendations