Skip to main content
Log in

Analysis and prediction of air permeability of woven barrier fabrics with respect to material, fabric construction and process parameters

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Air permeability is one of the important properties of conventional as well as technical fabrics such as protective garments, filters, and fabrics for airbags and parachutes. In case of surgical textiles, air permeability is an effective measure of thermo-physiological comfort. This study is aimed to analyze PES barrier fabrics and to develop correlation between permeability and influential material, construction and process parameters. Not only the individual effects of yarn, fabric and loom parameters but also the underlying complex interactions between fewer or several of these influencing factors exert significant influence on fabric porosity and permeability. Artificial neural network (ANN) is the suitable tool to map such complex input-output relationships, since a direct analytical solution is not possible. Feedforward neural network models were trained with combination of Levenberg-Marquardt algorithm and Bayesian regularization support incorporated in backpropagation. Based on the number of input variables, three ANN models were optimized. It was observed that the model which was trained with all selected inputs delivered promising results on test data, i.e., R2=0.985 and mean absolute error of 1.8%. To eliminate any doubt of overfitting, 10 % cross-validation was also performed for selected final model. Furthermore, to investigate the relative importance of input variables in the optimized ANN model, the rank analysis was also carried out. Research outcomes reveal that ANN can be used to tailor barrier fabric permeability depending on the requirements quickly without trials and error by adjusting loom, fabric and yarn parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Belkin, Tech. Text. Int., 1, 22 (1993).

    Google Scholar 

  2. B. K. Behera and H. Arora, J. Ind. Text., 38, 205 (2009).

    Article  Google Scholar 

  3. T. K. S. Wong, J. W. Y. Chung, Y. Li, W. F. Chan, P. T. Y. Ching, C. H. S. Lam, C. B. Chow, and W. H. Seto, Am. J. Infect. Control, 32, 90 (2004).

    Article  Google Scholar 

  4. A. Pezzin, “Thermo-Physiological Comfort Modelling of Fabrics and Garments”, Politecnico di Torino, PhD Thesis, 2015.

    Google Scholar 

  5. M. Havlová, Fibres Text. East. Eur., 21, 84 (2013).

    Google Scholar 

  6. S. Backer, Text. Res. J., 21, 703 (1951).

    Article  CAS  Google Scholar 

  7. E. Laourine and C. Cherif, Autex Res. J., 11, 31 (2011).

    Google Scholar 

  8. K. K. Leonas, Am. J. Infect. Control, 26, 495 (1998).

    Article  CAS  Google Scholar 

  9. A. Das and S. M. Ishtiaque, J. Text. Apparel, Technol. Manag., 3, 1 (2004).

    Google Scholar 

  10. M. Kuhr, D. Aibibu, and C. Cherif, J. Ind. Text., 45, 853 (2016).

    Article  CAS  Google Scholar 

  11. D. Aibibu, “Charakterisierung, Modellierung Und Optimierung Der Barriereeigenschaften von OP-Textilien”, Technische Universität Dresden, PhD Thesis, 2005.

    Google Scholar 

  12. H. K. Kaynak and O. Babaarslan in “Woven Fabr”, (H.-Y. Jeon Ed.), pp.155–178, Intech, 2011.

  13. Z. Zupin, A. Hladnik, and K. Dimitrovski, Text. Res. J., 82, 117 (2012).

    Article  CAS  Google Scholar 

  14. T. Wolters, Ph. D. Dissertation, RWTH Aachen, 2003.

    Google Scholar 

  15. B. K. Behera and M. P. Mani, Indian J. Fiber Text. Res., 32, 421 (2007).

    CAS  Google Scholar 

  16. Z. A. Malik, N. Haleem, M. H. Malik, and A. Tanwari, Fiber. Polym., 13, 1094 (2012).

    Article  CAS  Google Scholar 

  17. F. S. Hänsch, T. Gries, and M. S. Amabile, Melliand Int., 10, 39 (2004).

    Google Scholar 

  18. B. K. Behera and Y. Goyal, J. Ind. Text., 39, 45 (2009).

    Article  CAS  Google Scholar 

  19. N. Haleem, Z. A. Malik, M. H. Malik, T. Hussain, Q. Gillani, and A. Rehman, Fiber. Polym., 14, 1172 (2013).

    Article  CAS  Google Scholar 

  20. M. Tokarska, Text. Res. J., 74, 1045 (2004).

    Article  CAS  Google Scholar 

  21. A. Çay, S. Vassiliadis, M. Rangoussi, and I. Tarakçioglu, Int. J. Cloth. Sci. Technol., 19, 18 (2007).

    Article  Google Scholar 

  22. F. Walz and J. Luibrand, Text. Prax., 2, 330 (1947).

    Google Scholar 

  23. S. Haykin, “Neural Networks: A Comprehensive Foundation”, Prentice Hall, 1999.

    Google Scholar 

  24. O. Nelles, “Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models”, 1st ed., Springer-Verlag Berlin Heidelberg, 2001.

    Book  Google Scholar 

  25. M. T. Hagan and M. B. Menhaj, IEEE Trans. Neural Networks, 5, 989 (1994).

    Article  CAS  Google Scholar 

  26. D. W. Marquardt, J. Soc. Ind. Appl. Math., 11, 431 (1963).

    Article  Google Scholar 

  27. B. M. Wilamowski, S. Iplikci, O. Kaynak, and M. O. Efe, Proceedings. IJCNN’ 01. Int. Jt. Conf. Neural Networks, pp.1778–1782, 2001.

    Google Scholar 

  28. D. J. C. MacKay, Neural Comput., 4, 415 (1992).

    Article  Google Scholar 

  29. S. K. Neogi, “Role of Yarn Tension in Weaving”, Woodhead Publishing India, 2015.

    Google Scholar 

  30. B. M. D. Dauda and M. P. U. Bandara, Indian J. Fibre Text. Res., 29, 339 (2004).

    CAS  Google Scholar 

  31. V. K. Midha, R. Vashisht, and V. Midha, Fash. Text., 1, 12 (2014).

    Article  Google Scholar 

  32. P. K. Majumdar and A. Majumdar, Text. Res. J., 74, 652 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samander Ali Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, S.A., Kocaman, R.T., Kaynak, H.K. et al. Analysis and prediction of air permeability of woven barrier fabrics with respect to material, fabric construction and process parameters. Fibers Polym 18, 2005–2017 (2017). https://doi.org/10.1007/s12221-017-7241-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7241-5

Keywords

Navigation