Fibers and Polymers

, Volume 18, Issue 10, pp 1858–1864 | Cite as

Study on oil adsorption/desorption kinetics and polymer network parameters of poly(lauryl methacrylate-co-hydroxyethyl methacrylate)

Article
  • 24 Downloads

Abstract

In the present work, oil adsorption, desorption, and resorption of poly(lauryl methacrylate-co-hydroxyethyl methacrylate) P(LMA-co-HEMA) were evaluated with different oils by a gravimetric method. Adsorption kinetics were modeled using pseudo-first-order and pseudo-second-order equations. Polymer network parameters of P(LMA-co-HEMA) regarding average molecular weight (Mc) between two crosslink piontss can be calculated by oil absorbency at equilibrium (Q e ), the solubility parameter (δ) and polymer-solvent interaction parameter (χ) with Flory-Huggins relation. The results showed pseudo-second-order model has a better fit to the oil adsorption kinetic data The desorption can be analyzed by fitting a prediction of exponential-like decay to the deswelling curves. A typical oil desorption exhibited two stages: a burst release driven by concentration gradient, and a slow release controlled by diffusion and the elastic recovery of polymer networks. For reusability, the resorption behavior of P(LMA-co-HEMA) was also investigated. It was worth noting that oil resorption was faster than the first adsorption due to potential passages. Moreover, the adsorption capacity was not significantly changed after regeneration.

Keywords

Adsorption Swelling Polymer network parameters Kinetics Desorption Resorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Rengasamy, D. Das, and C. P. Karan, J. Hazard. Mater., 186, 526 (2011).CrossRefGoogle Scholar
  2. 2.
    C. Wan, Y. Lu, J. Cao, Q. Sun, and J. Li, Fiber. Polym., 16, 302 (2015).CrossRefGoogle Scholar
  3. 3.
    N. Cervin, C. Aulin, P. Larsson, and L. Wågberg, Cellulose, 19, 401 (2012).CrossRefGoogle Scholar
  4. 4.
    J. Yeum, H. Ghim, and Y. Deng, Fiber. Polym., 6, 277 (2005).CrossRefGoogle Scholar
  5. 5.
    U. K. Erandimala and D. C. Neckers, J. Polym. Sci. A, 48, 55 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Shavandi, Z. Haddadian, M. Ismail, N. Abdullah, and Z. Abidin, Water Air Soil Poll., 223, 4017 (2012).CrossRefGoogle Scholar
  7. 7.
    J. Zhao, C. Xiao, N. Xu, and X. Ma, Polym. Bull., 69, 733 (2012).CrossRefGoogle Scholar
  8. 8.
    V. Sivasankar, S. Rajkumar, S. Murugesh, and A. Darchen, Chem. Eng. J., 197, 162 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Babazadeh, J. Appl. Polym. Sci., 104, 2403 (2007).CrossRefGoogle Scholar
  10. 10.
    J. Zhao, C. F. Xiao, N. K. Xu, and Y. Feng, J. Macromol. Sci. B. Phys., 51, 2297 (2012).CrossRefGoogle Scholar
  11. 11.
    K. Karadag, G. Onaran, and H. B. Sonmez, J. Appl. Polym. Sci., 121, 3300 (2011).CrossRefGoogle Scholar
  12. 12.
    F.-C. Wu, R.-L. Tseng, S.-C. Huang, and R.-S. Juang, Chem. Eng. J., 151, 1 (2009).CrossRefGoogle Scholar
  13. 13.
    B. Wu and M. Zhou, J. Environ. Manage., 90, 217 (2009).CrossRefGoogle Scholar
  14. 14.
    G. Crini, H. N. Peindy, F. Gimbert, and C. Robert, Sep. Purif. Technol., 53, 97 (2007).CrossRefGoogle Scholar
  15. 15.
    Y. S. Ho and G. McKay, Resour. Conserv. Recycl., 25, 171 (1999).CrossRefGoogle Scholar
  16. 16.
    Y. Liu, Colloid Surf. A-Physicochem. Eng. Asp., 320, 275 (2008).CrossRefGoogle Scholar
  17. 17.
    H. Schott, J. Pharm. Sci., 81, 467 (1992).CrossRefGoogle Scholar
  18. 18.
    N. A. Neuburger and B. E. Eichinger, Macromolecules, 21, 3060 (1988).CrossRefGoogle Scholar
  19. 19.
    P. J. Flory, Chem. Rev., 35, 51 (1944).CrossRefGoogle Scholar
  20. 20.
    D. W. Krevelen and K. T. Nijenhuis, “Properties of Polymers: Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction from Additive Group Contributions”, Charter 18, pp.655–702, Elesvier, Amsterdam, 2009.CrossRefGoogle Scholar
  21. 21.
    S. Ajithkumar, N. Patel, and S. Kansara, Eur. Polym. J., 36, 2387 (2000).CrossRefGoogle Scholar
  22. 22.
    D. Parida, S. Lenka, and P. L. Nayak, J. Macromol. Sci. A, 32, 1365 (1995).CrossRefGoogle Scholar
  23. 23.
    A. V. G. Ruzette, P. Banerjee, A. M. Mayes, M. Pollard, T. P. Russell, R. Jerome, T. Slawecki, R. Hjelm, and P. Thiyagarajan, Macromolecules, 31, 8509 (1998).CrossRefGoogle Scholar
  24. 24.
    A. S. Hussein, A. Fakhru'l-Razi, and N. Abdullah, Int. J. Polym. Anal. Charact., 18, 414 (2013).CrossRefGoogle Scholar
  25. 25.
    S. Boral, A. Saxena, and H. B. Bohidar, Int. J. Biol. Macromol., 46, 232 (2010).CrossRefGoogle Scholar
  26. 26.
    K. Laszlo, A. Fluerasu, A. Moussaid, and E. Geissler, Soft Matter, 6, 4335 (2010).CrossRefGoogle Scholar
  27. 27.
    M. Erdogan and Ö. Pekcan, J. Polym. Sci. B, 38, 739 (2000).CrossRefGoogle Scholar
  28. 28.
    J. A. Yoon, S. A. Bencherif, B. Aksak, E. K. Kim, T. Kowalewski, J. K. Oh, and K. Matyjaszewski, Chem.- Asian J., 6, 128 (2011).CrossRefGoogle Scholar
  29. 29.
    N. Follonier, E. Doelker, and E. T. Cole, J. Control. Release, 36, 243 (1995).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Separation Membranes and Membrane Processes, School of TextilesTianjin Polytechnic UniversityTianjinChina
  2. 2.Australian Future Fibres Research and Innovation Centre, Institute for Frontier MaterialsDeakin UniversityVICAustralia
  3. 3.School of Materials Science and EngineeringTianjin Polytechnic UniversityTianjinChina

Personalised recommendations