Fibers and Polymers

, Volume 18, Issue 10, pp 1924–1930 | Cite as

Investigation on hydrostatic resistance and thermal performance of layered waterproof breathable fabrics

  • Abdur Razzaque
  • Pavla Tesinova
  • Lubos Hes
  • Jana Salacova
  • Hafiz Affan Abid


Waterproof breathable layered fabrics allow water vapor passing through, but resist liquid water to pass. This ability of the fabrics to protect rain and snow water while allowing sweat vapor to evaporate from inside to outside atmosphere, leads them to be used as outdoor sportswear or protective clothing. The big challenge of enhanced hydrostatic resistance of these fabrics with proper breathability and thermal comfort has widened the research scope. This study presents an experimental investigation on hydrostatic resistance and thermal behavior of layered waterproof breathable fabrics. Six different types of hydrophobic and hydrophilic membrane laminated layered fabrics were evaluated by varying different fabric parameters in the experiment. Hydrostatic resistance and water vapor permeability of the laminated fabrics were measured by SDL ATLAS Hydrostatic Head Tester and PERMETEST respectively. Thermal properties were evaluated by ALAMBETA instrument. Moreover, FX-3300 air permeability tester was used to measure air permeability which represents the porosity of the fabrics and computer based See System software was used for water contact angle measurement on the outer fabric surface in order to determine the hydrophobic and hydrophilic properties. This experiment clearly discusses the influence of different fabric characteristics and parameters on hydrostatic resistance and thermal properties of the breathable laminated fabrics. The results show that fabric material composition, density, thickness, and hydrophobic and hydrophilic membranes have significant effects on hydrostatic resistance, breathability and thermal properties of different laminated fabrics.


Waterproof Breathability Hydrostatic resistance Water vapor permeability Thermal properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Painter, Coat. Fab., 26, 107 (1996).CrossRefGoogle Scholar
  2. 2.
    B. Das, A. Das, V. Kothari, R. Fanguiero, and M. D. Araujo, J. Eng. Fib. Fab., 4, 20 (2009).Google Scholar
  3. 3.
    I. Ozen, J. Eng. Fib. Fab., 7, 63 (2012).Google Scholar
  4. 4.
    Dr. S. K. Chinta and D. Satish, Int. J. Rec. Dev. Eng. Tech., 3, 16 (2014).Google Scholar
  5. 5.
    A. Das, R. Alagirusamy, and P. Kumar, Aut. Res. J., 11, 54 (2011).Google Scholar
  6. 6.
    D. A. Holms, “Handbook of Technical Textiles”, pp.282–315, The Textile Institute, Wood Head Publishing Ltd., Cambridge, England, 2000.CrossRefGoogle Scholar
  7. 7.
    A. K. Sen, “Coated Textiles: Principles and Applications”, pp.133–154, Technomic Publishing Co. Inc., Lancaster, Basel, 2001.CrossRefGoogle Scholar
  8. 8.
    J. C. Gretton, D. B. Brook, H. M. Dyson, and S. C. Harlock, Text. Res. J., 68, 936 (1998).CrossRefGoogle Scholar
  9. 9.
    A. K. Yadav, N. Kasturiya, and G. N. Mathur, MM. Tex. India, 45, 56 (2002).Google Scholar
  10. 10.
    N. S. Save, M. Jassal, and A. K. Agrawal, J. Ind. Text. 32, 119 (2002).CrossRefGoogle Scholar
  11. 11.
    A. Mukhopadhyay and V. K. Midha, J. Ind. Text. 37, 225 (2008).CrossRefGoogle Scholar
  12. 12.
    W. Mayer, U. Moh, and M. Schrierer, Int. Text. Bull., 53, 16 (1989).Google Scholar
  13. 13.
    Y. K. Kang, C. H. Park, J. Kim, and T. J. Kang, Fiber. Polym., 8, 564 (2007).CrossRefGoogle Scholar
  14. 14.
    H. W. Ahn, C. H. Park, and S. E. Chung, Text. Res. J., 81, 1438 (2010).Google Scholar
  15. 15.
    N. Oglakcioclu and A. Marmarali, Fib. Text. East. Eur., 15, 64 (2007).Google Scholar
  16. 16.
    AATCC 127, Water Resistance: Hydrostatic Pressure Test, 1989.Google Scholar
  17. 17.
    CSN EN 20811 (800818), Determination of Water Penetration Resistance: Testing with Water Pressure, 1994.Google Scholar
  18. 18.
    M. Boguslawska-Baczek and L. Hes, Fib. Text. East. Eur., 21, 67 (2013).Google Scholar
  19. 19.
    L. Hes, Permetest Instrument, Liberec: Sensora Instrument and Consulting, 2005.Google Scholar
  20. 20.
    International Standard No. 23-204-02/01, Thermal Properties by Alambeta Device, 2004.Google Scholar
  21. 21.
    Y. J. Hwang, M. G. McCord, J. S. An, B. C. Kang, and S. W. Park, Text. Res. J., 75, 771 (2005).CrossRefGoogle Scholar
  22. 22.
    S. Gowri, L. Almeida, T. Amorim, N. Carneiro, A. P. Souto, and M. F. Esteves, Text. Res. J., 80, 1290 (2010).CrossRefGoogle Scholar
  23. 23.
    W. Fung, “Coated and Laminated Textiles”, pp.149-249, The Textile Institute, Wood Head Publishing Ltd., Cambridge, England, 2002.CrossRefGoogle Scholar
  24. 24.
    G. Havenith, Curr. Probl. Dermatol., 1, 221 (2002).Google Scholar
  25. 25.
    A. Mukhopadhyay and V. K. Midha, J. Ind. Text., 37, 225 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Abdur Razzaque
    • 1
  • Pavla Tesinova
    • 1
  • Lubos Hes
    • 1
  • Jana Salacova
    • 2
  • Hafiz Affan Abid
    • 2
  1. 1.Department of Textile EvaluationTechnical University of LiberecLiberecCzech Republic
  2. 2.Department of Material EngineeringTechnical University of LiberecLiberecCzech Republic

Personalised recommendations