Reproducing Kernels of Some Weighted Bergman Spaces


Herein, the theory of Bergman kernel is developed to the weighted case. A general form of weighted Bergman reproducing kernel is obtained, by which we can calculate concrete Bergman kernel functions for specific weights and domains.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bekoll, D., Bonami, A., Peloso, M.M., Ricci, F.: Boundedness of Bergman projections on tube domains over light cones. Math. Zeitsch. 237, 31–59 (2001)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Békollé, D., Bonami, A., Garrigós, G., Nana, C., Peloso, M.M., Ricci, F.: Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint, IMHOTEP 5(2012)

  3. 3.

    Bergman, S.: The Kernel Function and Conformal Mapping (Mathematical Surveys Number V). American Mathematical Society, Providence (1950)

    Google Scholar 

  4. 4.

    Boas, H.P., Fu, S., Sreaube, E.J.: The Bergman kernel function: explicit formulas and zeros. Proc. Am. Math. Soc. 127, 805–811 (1999)

    Article  Google Scholar 

  5. 5.

    Duren, P., Schuster, A.: Bergman Spaces. Mathematical Surveys and Monographs. AMS, Providence (2014)

    Google Scholar 

  6. 6.

    Hua, L.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. American Mathematics Society, Providence (1963)

    Google Scholar 

  7. 7.

    Krantz, S.G.: Function Theory of Several Complex Variables. American Mathematical Society, Providence (2001)

    Google Scholar 

  8. 8.

    Krantz, S.G.: Geometric Analysis of Bergman kernel and Metric, Graduate Texts in Mathematics 268. Springer, New York (2013)

    Google Scholar 

  9. 9.

    Saitoh, S.: Integral Transforms, Reproducing Kernels and Their Applications. Pitman Research Notes in Mathematics Series, vol. 369. Addison Wesley Longman, Harlow (1997)

    Google Scholar 

Download references


G-T. Deng: This work was partially supported by NSFC (Grant Nos. 11971042, 11971045 and 12071035) and by SRFDP (Grant 20100003110004). T. Qian: The work is supported by the Macau Science and Technology foundation No.FDCT079/2016/A2, FDCT0123/2018/A3, and the Multi-Year Research Grants of the University of Macau No. MYRG2018-00168-FST.

Author information



Corresponding author

Correspondence to Yun Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, GT., Huang, Y. & Qian, T. Reproducing Kernels of Some Weighted Bergman Spaces. J Geom Anal (2021).

Download citation


  • Reproducing kernel
  • Reproducing kernel Hilbert space
  • Weighted Bergman spaces