Gradient Estimate and Liouville Theorems for p-Harmonic Maps


In this paper, we first obtain an \(L^q\) gradient estimate for p-harmonic maps, by assuming the target manifold supporting a certain function, whose gradient and Hessian satisfy some analysis conditions. From this \(L^q\) gradient estimate, we get a corresponding Liouville type result for p-harmonic maps. Secondly, using these general results, we give various geometric applications to p-harmonic maps from complete manifolds with nonnegative Ricci curvature to manifolds with various upper bound on sectional curvature, under appropriate controlled images.

This is a preview of subscription content, access via your institution.


  1. 1.

    Chang, S.C., Chen, J.T., Wei, S.W.: Liouville properties for \(p\)-harmonic maps with finite \(q\)-energy. Trans. Am. Math. Soc. 368(2), 787–825 (2016)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Chang, L.-C., Sung, C.-J.A.: A note on \(p\)-harmonic \(l\)-forms on complete manifolds. Pac. J. Math. 254(2), 295–307 (2012)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cheng, S.Y.: Liouville Theorem for Harmonic Maps. Pure Mathematics, vol. 36, pp. 147–151. American Mathematical Society, Providence (1980)

    Google Scholar 

  4. 4.

    Choi, H.I.: On the Liouville theorem for harmonic maps. Proc. Am. Math. Soc. 85, 91–94 (1982)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Dong, Y.X., Wei, S.W.: On vanishing theorems for vector bundle valued \(p\)-forms and their applications. Commun. Math. Phys. 304, 329–368 (2011)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Eells, J., Lemaire, L.: Selected Topics in Harmonic Maps. CBMS Regional Conference Series in Mathematics 50. American Mathematical Society, Providence (1983)

    Google Scholar 

  7. 7.

    Hildebrandt, S.: Liouville theorems for harmonic mappings, and an approach to Bernstein theorems. Ann. Math. Stud. 102, 107–131 (1982)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Holopainen, I.: A sharp \(L^q\)-Liouville theorem for \(p\)-harmonic functions. Isr. J. Math. 115, 363–379 (2000)

    Article  Google Scholar 

  9. 9.

    Jin, Z.R.: Liouville theorems for harmonic maps. Invent. Math. 108, 1–10 (1992)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Kotschwar, B., Ni, L.: Local gradient estimates of \(p\)-harmonic functions, \(\frac{1}{H}\)-flow, and an entropy formula. Ann. Sci. École Norm. Super. 42, 1–36 (2009)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Matei, A.-M.: Gap phenomena for \(p\)-harmonic maps. Ann. Glob. Anal. Geom. 18, 541–554 (2000)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Moser, R.: The inverse mean curvature flow and \(p\)-harmonic functions. J. Eur. Math. Soc. 9, 77–83 (2007)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Nakauchi, N.: A Liouville type theorem for \(p\)-harmonic maps. Osaka J. Math. 35(2), 303–312 (1998)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Pigola, S., Rigoli, M., Setti, A.G.: Constancy of \(p\)-harmonic maps of finite \(q\)-energy into non-positively curved manifolds. Math. Z. 258(2), 347–362 (2008)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Pigola, S., Setti, A.G., Troyanov, M.: The connectivity at infinity of a manifold and \(L^{p, q}\)-Sobolev inequalities. Expo. Math. 32, 365–383 (2014)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Pigola, S., Veronelli, G.: On the homotopy class of maps with finite \(p\)-energy into non-positively curved manifolds. Geom. Dedicata 143, 109–116 (2009)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36(2), 417–450 (1992)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Schoen, R., Yau, S.T.: Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Comment. Math. Helv. 51(3), 333–341 (1976)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Shen, Y.: A Liouville theorem for harmonic maps. Am. J. Math. 117, 773–785 (1995)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Sung, C.-J.A., Wang, J.P.: Sharp gradient estimate and spectral rigidity for \(p\)-Laplacian. Math. Res. Lett. 21(4), 885–904 (2014)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Takegoshi, K.: A maximum principle for \(p\)-harmonic maps with \(L^p\)-finite energy. Proc. Am. Math. Soc. 126, 3749–3753 (1998)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Wang, X., Zhang, L.: Local gradient estimate for \(p\)-harmonic functions on Riemannian manifolds. Commun. Anal. Geom. 19, 759–772 (2011)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Wei, S.W.: \(p\)-harmonic geometry and related topics. Bull. Transilv. Univ. Bras. III 1(50), 415–453 (2008)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Zhang, X.: A note on \(p\)-harmonic 1-forms on complete manifolds. Can. Math. Bull. 44(3), 376–384 (2001)

    MathSciNet  Article  Google Scholar 

Download references


The authors would also like to thank Professor G.F. Wang for his interest and suggestions. Yuxin Dong is supported by NSFC Grant No. 11771087. Hezi Lin is supported by NSFC Grant No. 11831005.

Author information



Corresponding author

Correspondence to Hezi Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Lin, H. Gradient Estimate and Liouville Theorems for p-Harmonic Maps. J Geom Anal (2021).

Download citation


  • p-Harmonic maps
  • Gradient estimate
  • Liouville theorems

Mathematics Subject Classification

  • Primary 53C21
  • 53C43
  • Secondary 35B53
  • 58E20