Skip to main content
Log in

Partitions of Flat One-Variate Functions and a Fourier Restriction Theorem for Related Perturbations of the Hyperbolic Paraboloid

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We continue our research on Fourier restriction for hyperbolic surfaces, by studying local perturbations of the hyperbolic paraboloid \(z=xy\) which are of the form \(z=xy+h(y),\) where h(y) is a smooth function which is flat at the origin. The case of perturbations of finite type had already been handled before, but the flat case imposes several new obstacles. By means of a decomposition into intervals on which \(|h'''|\) is of a fixed size \({\lambda },\) we can apply methods devised in preceding papers, but since we lose control on higher order derivatives of h we are forced to rework the bilinear method for wave packets that are only slowly decaying. Another problem lies in the passage from bilinear estimates to linear estimates, for which we need to require some monotonicity of \(h'''.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bourgain, J.: Besicovitch-type maximal operators and applications to Fourier analysis. Geom. Funct. Anal. 22, 147–187 (1991)

    Article  MathSciNet  Google Scholar 

  2. Bourgain, J.: Some new estimates on oscillatory integrals. Essays in Fourier Analysis in honor of E. M. Stein. Princeton Math. Ser. 42. Princeton University Press, Princeton, pp. 83–112 (1995)

  3. Bourgain, J.: Estimates for cone multipliers. Oper. Theory Adv. Appl. 77, 1–16 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21, 1239–1295 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bejenaru, I.: Optimal bilinear restriction estimates for general hypersurfaces and the role of the shape operator. Int. Math. Res. Not. IMRN 23, 7109–7147 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Buschenhenke, S., Müller, D., Vargas, A.: A Fourier restriction theorem for a two-dimensional surface of finite type. Anal. PDE 10–4, 817–891 (2017)

    Article  MathSciNet  Google Scholar 

  7. Buschenhenke, S., Müller, D., Vargas, A.: On Fourier restriction for finite-type perturbations of the hyperbolic paraboloid, preprint, arXiv:1902.05442v2 (2019)

  8. Buschenhenke, S., Müller, D., Vargas, A.: A Fourier restriction theorem for a perturbed hyperbolic paraboloid. Proc. London Math. Soc. (3) 120(1), 124–154 (2020)

    Article  MathSciNet  Google Scholar 

  9. Cho, C.-H., Lee, J.: Improved restriction estimate for hyperbolic surfaces in $\mathbb{R}^3$. J. Funct. Anal. 273(3), 917–945 (2017)

    Article  MathSciNet  Google Scholar 

  10. Greenleaf, A.: Principal curvature and harmonic analysis. Indiana Univ. Math. J. 30(4), 519–537 (1981)

    Article  MathSciNet  Google Scholar 

  11. Guth, L.: A restriction estimate using polynomial partitioning. J. Am. Math. Soc. 29(2), 371–413 (2016)

    Article  MathSciNet  Google Scholar 

  12. Guth, L.: Restriction estimates using polynomial partitioning II. Acta Math. 221(1), 81–142 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ikromov, I.A., Müller, D.: Uniform estimates for the Fourier transform of surface carried measures in $\mathbb{R}^3$ and an application to Fourier restriction. J. Fourier Anal. Appl. 17(6), 1292–1332 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ikromov, I.A., Müller, D.: Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra. Annals of Mathematics Studies, vol. 194. Princeton University Press, Princeton (2016)

    Book  Google Scholar 

  15. Ikromov, I.A., Kempe, M., Müller, D.: Estimates for maximal functions associated with hypersurfaces in $\mathbb{R}^3$ and related problems in harmonic analysis. Acta Math. 204, 151–271 (2010)

    Article  MathSciNet  Google Scholar 

  16. Kim, J.: Some remarks on Fourier restriction estimates, preprint. arXiv:1702.01231 (2017)

  17. Lee, S.: Bilinear restriction estimates for surfaces with curvatures of different signs. Trans. Am. Math. Soc. 358(8), 3511–3533 (2005)

    Article  MathSciNet  Google Scholar 

  18. Lee, S., Vargas, A.: Restriction estimates for some surfaces with vanishing curvatures. J. Funct. Anal. 258(9), 2884–2909 (2010)

    Article  MathSciNet  Google Scholar 

  19. Moyua, A., Vargas, A., Vega, L.: Schrödinger maximal function and restriction properties of the Fourier transform. Int. Math. Res. Not. 16, 793–815 (1996)

    Article  Google Scholar 

  20. Moyua, A., Vargas, A., Vega, L.: Restriction theorems and maximal operators related to oscillatory integrals in $\mathbb{R}^3$. Duke Math. J. 96(3), 547–574 (1999)

    Article  MathSciNet  Google Scholar 

  21. Sjölin, Per: Fourier multipliers and estimates of the Fourier transform of measures carried by smooth curves in $\mathbb{R}^{2}$. Studia Math. 51, 169–182 (1974)

    Article  MathSciNet  Google Scholar 

  22. Stein, E.M.: Oscillatory Integrals in Fourier Analysis. Beijing Lectures in Harmonic Analysis. Princeton University Press, Princeton (1986)

    Google Scholar 

  23. Stovall, B.: Linear and bilinear restriction to certain rotationally symmetric hypersurfaces. Trans. Am. Math. Soc. 369(6), 4093–4117 (2017)

    Article  MathSciNet  Google Scholar 

  24. Stovall, B.: Scale invariant Fourier restriction to a hyperbolic surface. Anal. PDE 12(5), 1215–1224 (2019)

    Article  MathSciNet  Google Scholar 

  25. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    Article  MathSciNet  Google Scholar 

  26. Tao, T.: Endpoint bilinear restriction theorems for the cone, and some sharp null-form estimates. Math. Z. 238, 215–268 (2001)

    Article  MathSciNet  Google Scholar 

  27. Tao, T.: A Sharp bilinear restriction estimate for paraboloids. Geom. Funct. Anal. 13, 1359–1384 (2003)

    Article  MathSciNet  Google Scholar 

  28. Tao, T., Vargas, A.: A bilinear approach to cone multipliers I. Restriction estimates. Geom. Funct. Anal. 10, 185–215 (2000)

    Article  MathSciNet  Google Scholar 

  29. Tao, T., Vargas, A.: A bilinear approach to cone multipliers II. Applications. Geom. Funct. Anal. 10, 216–258 (2000)

    Article  MathSciNet  Google Scholar 

  30. Tao, T., Vargas, A., Vega, L.: A bilinear approach to the restriction and Kakeya conjectures. J. Am. Math. Soc. 11(4), 967–1000 (1998)

    Article  MathSciNet  Google Scholar 

  31. Tomas, P.A.: A restriction theorem for the Fourier transform. Bull. Am. Math. Soc. 81, 477–478 (1975)

    Article  MathSciNet  Google Scholar 

  32. Vargas, A.: Restriction theorems for a surface with negative curvature. Math. Z. 249, 97–111 (2005)

    Article  MathSciNet  Google Scholar 

  33. Wolff, T.: A sharp bilinear cone restriction estimate. Ann. Math. Second Ser. 153(3), 661–698 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Müller.

Additional information

In memory of Eli Stein.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Stefan Buschenhenke was partially supported by the ERC Grant 307617. Stefan Buschenhenke and Detlef Müller The first two authors were partially supported by the DFG Grants MU 761/11-1 and MU 761/11-2. Ana Vargas was partially supported by Grants MTM2013-40945 (MINECO) and MTM2016-76566-P and PID2019-105599GB-100 (Ministerio de Ciencia, Innovaci\(\acute{\text {o}}\)n y Universidades), Spain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buschenhenke, S., Müller, D. & Vargas, A. Partitions of Flat One-Variate Functions and a Fourier Restriction Theorem for Related Perturbations of the Hyperbolic Paraboloid. J Geom Anal 31, 6941–6986 (2021). https://doi.org/10.1007/s12220-020-00587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00587-9

Keywords

Mathematics Subject Classification

Navigation