Volume Functional of Compact 4-Manifolds with a Prescribed Boundary Metric


We prove that a critical metric of the volume functional on a 4-dimensional compact manifold with boundary satisfying a second-order vanishing condition on the Weyl tensor must be isometric to a geodesic ball in a simply connected space form \(\mathbb {R}^{4}\), \(\mathbb {H}^{4}\) or \(\mathbb {S}^{4}.\) Moreover, we provide an integral curvature estimate involving the Yamabe constant for critical metrics of the volume functional, which allows us to get a rigidity result for such critical metrics.

This is a preview of subscription content, log in to check access.


  1. 1.

    Bach, R.: Zur Weylschen Relativiätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 9, 110–135 (1921)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Baltazar, H., Ribeiro Jr., E.: Critical metrics of the volume functional on manifolds with boundary. Proc. Am. Math. Soc. 145, 3513–3523 (2017)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Baltazar, H., Ribeiro Jr., E.: Remarks on critical metrics of the scalar curvature and volume functionals on compact manifolds with boundary. Pac. J. Math. 297, 29–45 (2018)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Barbosa, E., Lima, L., Freitas, A.: The generalized Pohozaev–Schoen identity and some geometric applications. Commun. Anal. Geom. (2016). arXiv:1607.03073v1

  5. 5.

    Barros, A., Diógenes, R., Ribeiro Jr., E.: Bach-flat critical metrics of the volume functional on 4-dimensional manifolds with boundary. J. Geom. Anal. 25, 2698–2715 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Batista, R., Diógenes, R., Ranieri, M., Ribeiro Jr., E.: Critical metrics of the volume functional on compact three-manifolds with smooth boundary. J. Geom. Anal. 27, 1530–1547 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Besse, A.: Einstein Manifolds. Springer, Berlin (1987)

    Google Scholar 

  8. 8.

    Bour, V.: Fourth order curvature flows and geometric applications. (2010). arXiv:1012.0342

  9. 9.

    Cao, H.-D., Chen, Q.: On Bach-flat gradient shrinking Ricci solitons. Duke Math. J. 162, 1149–1169 (2013)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Catino, G.: Integral pinched shrinking Ricci solitons. Adv. Math. 303, 279–294 (2016)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Catino, G., Mastrolia, P., Monticelli, D.: Gradient Ricci solitons with vanishing conditions on Weyl. J. Math. Pures Appl. 108, 1–13 (2017)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Corvino, J.: Scalar curvature deformations and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Corvino, J., Eichmair, M., Miao, P.: Deformation of scalar curvature and volume. Math. Ann. 357, 551–584 (2013)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Escobar, J.: The Yamabe problem on manifolds with boundary. J. Diff. Geom. 34, 21–84 (1992)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Gompf, R., Stipsicz, A.: 4-Manifolds and Kirby Calculus. Graduate Studies in Mathematics. American Mathematical Society, Providence (1999)

    Google Scholar 

  16. 16.

    Hebey, E., Vaugon, M.: Effective \(L_p\)-pinching for the concircular curvature. J. Geom. Anal. 6, 531–553 (1996)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Hilbert, D.: Die grundlagen der physik. Nach. Ges. Wiss. Göttingen, 461–472 (1915)

  18. 18.

    Huang, G.: Integral pinched gradient shrinking \(\rho \)-Einstein solitons. J. Math. Anal. Appl. 451, 1045–1055 (2017)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kim, J., Shin, J.: Four dimensional static and related critical spaces with harmonic curvature. Pac. J. Math. 295, 429–462 (2018)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Kobayashi, O.: A differential equation arising from scalar curvature function. J. Math. Soc. Jpn. 34, 665–675 (1982)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Kobayashi, O., Obata, M.: Conformally-flatness and static space-time, Manifolds and Lie Groups. (Notre Dame, Ind., 1980). Progr. Math., 14, Birkhäuser, Boston, MA, pp. 197–206 (1981)

  22. 22.

    Miao, P., Tam, L.-F.: On the volume functional of compact manifolds with boundary with constant scalar curvature. Calc. Var. PDE 36, 141–171 (2009)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Miao, P., Tam, L.-F.: Einstein and conformally flat critical metrics of the volume functional. Trans. Am. Math. Soc. 363, 2907–2937 (2011)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Scorpan, A.: The Wild World of 4-Manifolds. American Mathematical Society, Providence (1974)

    Google Scholar 

  25. 25.

    Yuan, W.: Volume comparison with respect to scalar curvature. (2016). arXiv:1609.08849v1

Download references


The authors want to thank the referee for careful reading, relevant remarks and valuable suggestions. Moreover, they want to thank A. Barros, E. Barbosa and R. Batista for fruitful conversations about this subject.

Author information



Corresponding author

Correspondence to E. Ribeiro Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Baltazar was partially supported by CNPq/Brazil and FAPEPI/Brazil.

E. Ribeiro was partially supported by CNPq/Brazil [Grant: 305410/2018-0 and 160002/2019-2], PRONEX - FUNCAP /CNPq/ Brazil and CAPES/ Brazil - Finance Code 001.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baltazar, H., Diógenes, R. & Ribeiro, E. Volume Functional of Compact 4-Manifolds with a Prescribed Boundary Metric. J Geom Anal (2020). https://doi.org/10.1007/s12220-020-00452-9

Download citation


  • Volume functional
  • Critical metrics
  • Compact manifolds
  • Boundary

Mathematics Subject Classification

  • Primary 53C25
  • 53C20
  • 53C21
  • Secondary 53C65