BMO Spaces on Weighted Homogeneous Trees


We consider an infinite homogeneous tree \({\mathcal {V}}\) endowed with the usual metric d defined on graphs and a weighted measure \(\mu \). The metric measure space \(({\mathcal {V}},d,\mu )\) is nondoubling and of exponential growth, hence the classical theory of Hardy and BMO spaces does not apply in this setting. We introduce a space \(BMO(\mu )\) on \(({\mathcal {V}},d,\mu )\) and investigate some of its properties. We prove in particular that \(BMO(\mu )\) can be identified with the dual of a Hardy space \(H^1(\mu )\) introduced in a previous work and we investigate the sharp maximal function related with \(BMO(\mu )\).

This is a preview of subscription content, log in to check access.


  1. 1.

    Arditti, L., Tabacco, A., Vallarino, M.: Hardy spaces on weighted homogeneous trees. In: Boggiatto, P., et al. (eds.) Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis, pp. 21–39. Birkhäuser, Cham (2020)

    Google Scholar 

  2. 2.

    Bourbaki, N.: Topological Vector Spaces, Chapters 1–5, Elements of Mathematics (Berlin). Springer, Berlin (1987)

    Google Scholar 

  3. 3.

    Carbonaro, A., Mauceri, G., Meda, S.: \(H^1\) and \(BMO\) for certain locally doubling metric measure spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8(3), 543–582 (2009)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Celotto, D., Meda, S.: On the analogue of the Fefferman–Stein theorem on graphs with the Cheeger property. Ann. Mat. Pura Appl. (4) 197(5), 1637–1677 (2018)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Coifman, R.R., Weiss, G.: Analyse Harmonique Non Commutative Sur Certains Espaces Homogenes. Lecture Notes in Mathematics, vol. 242. Springer, New York (1971)

  6. 6.

    Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982)

    Google Scholar 

  9. 9.

    Feneuil, J.: Hardy and BMO spaces on graphs, application to Riesz transform. Potential Anal. 45(1), 1–54 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hebisch, W., Steger, T.: Multipliers and singular integrals on exponential growth groups. Math. Z. 245(1), 37–61 (2003)

    MathSciNet  Article  Google Scholar 

  11. 11.

    John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415–426 (1961)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Ionescu, A.D.: Fourier integral operators on noncompact symmetric spaces of real rank one. J. Funct. Anal. 174(2), 274–300 (2000)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Martini, A., Ottazzi, A., Vallarino, M.: Spectral multipliers for sub-Laplacians on solvable extensions of stratified groups. J. Anal. Math. 136, 357–397 (2018)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Mauceri, G., Meda, S., Vallarino, M.: Harmonic Bergman spaces, the Poisson equation and the dual of Hardy-type spaces on certain noncompact manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14(4), 1157–1188 (2015)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)

    Google Scholar 

  16. 16.

    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32. Princeton University Press, Princeton, N.J. (1971)

    Google Scholar 

  17. 17.

    Taylor, M.: Hardy spaces and BMO on manifolds with bounded geometry. J. Geom. Anal. 19(1), 137–190 (2009)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Vallarino, M.: Spaces \(H^1\) and \(BMO\) on \(ax+b\)-groups. Collect. Math. 60(3), 277–295 (2009)

    MathSciNet  Article  Google Scholar 

Download references


Work partially supported by the MIUR project “Dipartimenti di Eccellenza 2018-2022” (CUP E11G18000350001). The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information



Corresponding author

Correspondence to Anita Tabacco.

Additional information

Dedicated to Guido Weiss on the occasion of his 90th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arditti, L., Tabacco, A. & Vallarino, M. BMO Spaces on Weighted Homogeneous Trees. J Geom Anal (2020).

Download citation


  • Hardy spaces
  • BMO spaces
  • Homogeneous trees
  • Nondoubling measure
  • Sharp maximal function

Mathematics Subject Classification

  • 05C05
  • 30H35
  • 42B30