Abstract
We present the linearized metrizability problem in the context of parabolic geometries and subriemannian geometry, generalizing the metrizability problem in projective geometry studied by R. Liouville in 1889. We give a general method for linearizability and a classification of all cases with irreducible defining distribution where this method applies. These tools lead to natural subriemannian metrics on generic distributions of interest in geometric control theory.
This is a preview of subscription content, access via your institution.
References
- 1.
Bryant, R.L., Dunajski, M., Eastwood, M.: Metrisability of two-dimensional projective structures. J. Differ. Geom. 83, 465–499 (2009)
- 2.
Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. reine angew. Math. 537, 67–103 (2001)
- 3.
Calderbank, D.M.J., Eastwood, M., Matveev, V.S., Neusser, K.: C-projective geometry. Mem. Am. Math. Soc. (to appear). arXiv:1512.04516
- 4.
Čap, A., Schichl, H.: Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29, 453–505 (2000)
- 5.
Čap, A., Slovák, J.: Parabolic Geometries I, Background and General Theory. Mathematical Surveys and Monographs, vol 154. American Mathematical Society, Providence (2009)
- 6.
Čap, A., Slovák, J., Souček, V.: Bernstein–Gelfand–Gelfand sequences. Ann. Math. (2) 154(1), 97–113 (2001)
- 7.
Čap, A., Gover, A.R., Hammerl, M.: Normal BGG solutions and polynomials. Int. J. Math. 23, 1250117 (2012)
- 8.
Domashev, V.V., Mikeš, J.: On the theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23, 160–163 (1978) (translation from Mat. Zametki 23 (1978), 297–304)
- 9.
Doubrov, B., Slovák, J.: Inclusions of parabolic geometries. Pure Appl. Math. Q. 6, 755–780 (2010)
- 10.
Eastwood, M., Matveev, V.: Metric connections in projective differential geometry. In: Eastwood, M., Miller, W. (eds.) Symmetries and Overdetermined Systems of Partial Differential Equations. IMA Volumes in Mathematics and its Applications, vol. 144, pp. 339–350. Springer, New York (2008)
- 11.
Fegan, H.D.: Conformally invariant first order differential operators. Q. J. Math. Oxf. 27, 371–378 (1976)
- 12.
Frost, G.E.: The Projective Parabolic Geometry of Riemannian, Kähler and Quaternion-Kähler Metrics. PhD Thesis, University of Bath (2016). arXiv:1605.04406
- 13.
Gauduchon, P.: Structures de Weyl et théorèmes d’annulation sur une variété conforme autoduale. Ann. Sc. Norm. Sup. Pisa 18, 563–629 (1991)
- 14.
Hrdina, J.: Almost complex projective structures and their morphisms. Arch. Math. 45, 255–264 (2009)
- 15.
Hrdina, J., Slovák, J.: Generalized planar curves and quaternionic geometry. Ann. Glob. Anal. Geom. 29, 349–360 (2006)
- 16.
Jerison, D., Lee, J.M.: The Yamabe problem on CR manifolds. J. Differ. Geom. 25, 167–197 (1987)
- 17.
Liouville, R.: Sur les invariants de certaines équations différentielles et sur leurs applications. J. l’Ecole Polytech. 59, 7–76 (1889)
- 18.
Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2006)
- 19.
Púček, R.: Applications of invariant operators in real parabolic geometries. MSc Thesis, Prague (2016)
- 20.
Schmalz, G., Slovák, J.: Free CR distributions. Cent. Eur. J. Math. 10, 1896–1913 (2012)
- 21.
Sinjukov, N.S.: Geodesic Mappings of Riemannian Spaces. “Nauka”, Moscow (1979) (in Russian)
- 22.
Slovák, J., Souček, V.: First order invariant differential operators for parabolic geometries. In: Proceedings of Conference Analyse harmonique et analyse sur les varietes, 1999, CIRM, Luminy, in Seminaires et Congres, vol 4, pp 249–274. Society of Mathematics France (2000)
- 23.
Yoshimatsu, Y.: H-projective connections and H-projective transformations. Osaka J. Math. 15, 435–459 (1978)
Acknowledgements
The authors thank the Czech Grant Agency, Grant Nr. P201/12/G028, for financial support.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Calderbank, D.M.J., Slovák, J. & Souček, V. Subriemannian Metrics and the Metrizability of Parabolic Geometries. J Geom Anal 31, 1671–1702 (2021). https://doi.org/10.1007/s12220-019-00320-1
Received:
Published:
Issue Date:
Keywords
- Projective metrizability
- Subriemannian metrizability
- Weyl connections
- Cartan geometry
- Overdetermined linear PDE
- Parabolic geometry
- Bernstein–Gelfand– Gelfand resolution
Mathematics Subject Classification
- Primary 53B15
- 53C17
- Secondary 14M15
- 17B10
- 22E46
- 53C15
- 53C30
- 58A32
- 58J70
- 93C10