Extension of Two-Dimensional Mean Curvature Flow with Free Boundary


Given a mean curvature flow of compact, embedded \(C^{2}\) surfaces satisfying Neumann free boundary condition on a mean convex, smooth support surface in 3-dimensional Euclidean space, we show that it can be extended as long as its mean curvature and perimeter stay uniformly bounded along the flow.

This is a preview of subscription content, access via your institution.


  1. 1.

    Allard, W.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Andrews, B.: Fully nonlinear parabolic equations in two space variables. arXiv:math/0402235v1

  3. 3.

    Aronson, D., Serrin, J.: Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81–122 (1967)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Buckland, J.: Mean curvature flow with free boundary on smooth hypersurfaces. J. Reine Angew. Math. 586, 71–90 (2005)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cooper, A.: A characterization of the singular time of the mean curvature flow. Proc. Am. Math. Soc. 139(8), 29332942 (2011)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Colding, T., Minicozzi II, W.: Smooth compactness of self-shrinkers. Comment. Math. Helv. 87(2), 463–475 (2012)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Ecker, K.: Regularity Theory for Mean Curvature Flow. Birkhäuser, Boston (2004)

    Google Scholar 

  8. 8.

    Ecker, K., Huisken, G.: Interior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105, 547–569 (1991)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Grüter, M., Jost, J.: Allard type regularity results for varifolds with free boundaries. Ann. Scu. Norm. Sup. Pisa Cal. Sci (4) 13(1), 129–169 (1986)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Huisken, G.: Non-parametric mean curvature evolution with boundary conditions. J. Differ. Equ. 77, 369–378 (1989)

    Article  Google Scholar 

  11. 11.

    Huisken, G.: Asymptotic behaviour for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Huisken, G., Sinestrari, C.: Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math. 183(1), 45–70 (1999)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Ilmanen, T.: Singularities of mean curvature flow of surfaces (preprint)

  14. 14.

    Koeller, A.: Regularity of mean curvature flows with Neumann free boundary conditions. Calc. Var. 43, 265–309 (2012)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Le, N., Sesum, N.: The mean curvature at the first singular time of the mean curvature flow. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(6), 14411459 (2010)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Li, H., Wang, B.: The extension problem of the mean curvature flow (I). Invent. Math. (2019). https://doi.org/10.1007/s00222-019-00893-2

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Leng, Y., Zhao, E., Zhao, H.: Notes on the extension of the mean curvature flow. Pac. J. Math. 269(2), 385–392 (2014). 1, 2014

    MathSciNet  Article  Google Scholar 

  18. 18.

    Pérez, J., Ros, A.: Properly embedded minimal surfaces with finite total curvature. In: The Global Theory of Minimal Surfaces in Flat Spaces (Martina Franca, 1999). Lecture Notes in Math., vol. 1775 , pp. 15–66. Fond. CIME/CIME Found. Subser., Springer, Berlin (2002)

  19. 19.

    Stahl, A.: Regularity estimates for solutions to the mean curvature flow with a Neumann boundary condition. Calc. Var. 4, 385–407 (1996)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Walter, W.: On the strong maximum principle for parabolic differential equations. Proc. Edinburgh Math. Soc. (2) 29(1), 93–96 (1986)

    MathSciNet  Article  Google Scholar 

  21. 21.

    White, B.: A local regularity theorem for mean curvature flow. Ann. Math. (2) 161(3), 1487–1519 (2005)

    MathSciNet  Article  Google Scholar 

Download references


The author is grateful to Peter Sternberg for suggesting the problem, for insightful discussions and for providing helpful comments on this paper.

Author information



Corresponding author

Correspondence to Siao-Hao Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, SH. Extension of Two-Dimensional Mean Curvature Flow with Free Boundary. J Geom Anal 31, 1568–1624 (2021). https://doi.org/10.1007/s12220-019-00316-x

Download citation


  • Mean curvature flow
  • Free boundary
  • Extension problem