## Abstract

We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose \(\alpha _{1},\alpha _{2},\ldots ,\alpha _{N}\) are \(N\ge 4\) nonnegative real numbers with \(\alpha _{j}\ge 2\;(1\le j\le J\le N-3)\) being integers such that

given any *J* points \(p_{1},\ldots ,p_{J}\) on \(S^{2}\setminus \{0,\infty \}\), whether there exists a non-CSC conformal HCMU metric *g* with singular angles\(2\pi \alpha _{1},\ldots ,2\pi \alpha _{N}\), which belongs to the first class (see Definition 1.1) such that \(p_{1},\ldots ,p_{J}\) are all saddle points of scalar curvature *R* of *g* and \(0,\infty \) are extremal point of *R*. We will give a sufficient condition when *R* has only one saddle point. As its application, we prove that when the number of the singularities is 4, Obstruction Theorem is also a sufficient condition for the existence of a non-CSC conformal HCMU metric on \(S^{2}\).

This is a preview of subscription content, access via your institution.

## References

- 1.
Aubin, T.: Nonlinear Analysis on Manifolds, Monge Ampre Equations. Grundlehren der Mathematicschen Wissenchaften, vol. 252. Springer, New York (1982)

- 2.
Brown, R.F.: A Topological Introduction to Nonlinear Analysis. Birkhäuser, Boston (2014); Addison-Wesley, Reading (1957)

- 3.
Calabi, E.: Extremal Kähler metrics. In: Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 259–290. Princeton University Press, Princeton (1982)

- 4.
Chen, X.X.: Weak limits of Riemannian metrics in surfaces with integral curvature bound. Calc. Var.

**6**, 189–226 (1998) - 5.
Chen, X.X.: Extremal Hermitian metrics on Riemann surfaces. Calc. Var. Partial Differ. Equ.

**8**(3), 191–232 (1999) - 6.
Chen, X.X.: Obstruction to the existence of metric whose curvature has umbilical Hessian in a K-surface. Commun. Anal. Geom.

**8**(2), 267–299 (2000) - 7.
Chen, Q., Wu, Y.Y.: Existences and explicit constructions of HCMU metrics on \(S^2\) and \(T^2\). Pac. J. Math.

**240**(2), 267–288 (2009) - 8.
Chen, Q., Wu, Y.Y.: Character 1-form and the existence of an HCMU metric. Math. Ann.

**351**(2), 327–345 (2011) - 9.
Chen, Q., Chen, X.X., Wu, Y.Y.: The structure of HCMU metric in a K-surface. Int. Math. Res. Not.

**2005**(16), 941–958 (2005) - 10.
Chen, Q., Wu, Y.Y., Xu, B.: On one-dimensional and singular Calabi’s extremal metrics whose Gauss curvatures have nonzero umblical Hessians. Isr. J. Math

**208**, 385–412 (2015) - 11.
Garcia, C.B., Li, T.Y.: On the number of solutions to polynomial systems of equations. SIAM J. Numer. Anal.

**17**(4), 540–546 (1980) - 12.
Hsu, S.B.: Ordinary Differential Equations with Applications, 2nd edn. World Scientific, Singapore (2013)

- 13.
Lin, C.S., Zhu, X.H.: Explicit construction of extremal Hermitian metric with finite conical singularities on \(S^2\). Commun. Anal. Geom.

**10**(1), 177–216 (2002) - 14.
Springer, G.: Introduction to Riemann Surfaces. Addison-Wesley, Reading (1957)

- 15.
Wang, G.F., Zhu, X.H.: Extremal Hermitian metrics on Riemann surfaces with singularities. Duke Math. J

**104**, 181–210 (2000) - 16.
Wei, Z.Q., Wu, Y.Y.: Non-CSC extremal Kähler metrics on \({{S}}^2_{\{2,2,2\}}\). Results Math.

**74**, 58 (2019) - 17.
Wei, Z.Q., Wu, Y.Y.: One existence theorem for Non-CSC extremal K\(\ddot{a}\)hler metrics with singularities on \(S^{2}\). TJM

**22**(1), 55–62 (2018) - 18.
Wei, Z.Q., Wu, Y.Y.: Multi-valued holomorphic functions and non-CSC extremal Kähler metrics with singularities on compact Riemann surfaces. Differ. Geom. Appl.

**60**(10), 66–79 (2018) - 19.
Troyanov, M.: Prescrbing curvature on compact surface with conical singularities. Tran. Am. Math. Soc.

**324**(2), 793–821 (1991) - 20.
Yau, S.T.: Calabi’s conjecture and some new results in algebraic. Proc. Natl. Acad. Sci. USA

**74**(5), 1798–1799 (1977) - 21.
Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampàre equation I. Commun. Pure Appl. Math.

**31**(3), 339–411 (1978)

## Acknowledgements

Yingyi Wu is supported by NSFC No. 11471308. The authors would like to express their deep gratitude to the referee for his/her very valuable comments on improving the whole paper. This work is also supported by the National Natural Science Foundation of China (Grant No. 11871450).

## Author information

### Affiliations

### Corresponding author

## Additional information

### Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

## About this article

### Cite this article

Wei, Z., Wu, Y. On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on \(S^2\).
*J Geom Anal* **31, **1555–1567 (2021). https://doi.org/10.1007/s12220-019-00315-y

Received:

Published:

Issue Date:

### Keywords

- Extremal Kähler metric
- Conical singularities
- Cusp singularities

### Mathematics Subject Classification

- 53C21
- 53C56