Abstract
In this paper we extend the Cheeger–Colding–Tian theory to the conic Kahler–Einstein metrics. In general, there are no smooth approximations of a family of conic Kahler–Einstein metrics with Ricci curvature uniformly bounded from below. So we have to deal with the technical issues to extend the original arguments.
This is a preview of subscription content, access via your institution.
References
- 1.
Ambrosio, L., Gigli, N., Savar, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)
- 2.
Bamler, R.: Structure theory of singular spaces, preprint. arXiv:1603.05236
- 3.
Bo, H., Kell, M., Xia, C.: Harmonic functions on metric measure spaces, preprint. arXiv:1308.3607
- 4.
Cheeger, J.: Degeneration of Riemannian Metrics Under Ricci Curvature Bounds. Scuola Normale Superiore, Pisa (2001)
- 5.
Cheeger, J.: Integral bounds on curvature, elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal. 13(1), 20–72 (2003)
- 6.
Cheeger, J., Colding, T.: Lower bounds on Ricci curvature and almost rigidity of warped product. Ann. Math. 144(1), 189–237 (1996)
- 7.
Cheeger, J., Colding, T.: On the strcuture of spces with Ricci curvature bouned below: I. J. Differ. Geom. 46(3), 406–480 (1997)
- 8.
Cheeger, J., Colding, T.: On the strcuture of spces with Ricci curvature bouned below: II. J. Differ. Geom. 54(1), 13–35 (2000)
- 9.
Cheeger, J., Colding, T., Tian, G.: On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal. 12(5), 873–914 (2002)
- 10.
Colding, T.: Ricci curvature and the volume convergence. Ann. Math. 145(3), 477–504 (1997)
- 11.
Dai, X.Z., Wei, G.F., Zhang, Z.L.: Neumann isoperimetric constant estimate for convex domains. arXiv:1612.05843
- 12.
Datar, V.: On convexity of the regular set of conical Kähler–Einstein metrics. Math. Res. Lett. 23(1), 105–126 (2016)
- 13.
Gigli, N.: The splitting theorem in non-smooth context, preprint. arXiv:1302.5555
- 14.
Gigli, N., Philippis, G.: From volume cone to metric cone in the non smooth setting, preprint. arXiv:1512.03113
- 15.
Li, C., Tian, G., Wang, F.: On Yau–Tian–Donaldson conjecture for singular Fano varieties, preprint. arXiv:1711.09530
- 16.
Philippis, G., Gigli, N.: Non-collapsed spaces with Ricci curvature bounded from below, preprint. arXiv:1708.02060
- 17.
Tian, G.: K-stability and Kähler–Einstein metrics. Commun. Pure Appl. Math. 68(7), 1085–1156 (2015)
- 18.
Tian, G., Wang, F.: On the existence of conic Kähler–Einsten metrics, preprint
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Gang Tian: Partially supported by NSFC Grants 11331001. Feng Wang: Partially supported by NSFC Grants 11501501 and the Fundamental Research Funds for the Central Universities 2018QNA3001.
Rights and permissions
About this article
Cite this article
Tian, G., Wang, F. Cheeger–Colding–Tian Theory for Conic Kähler–Einstein Metrics. J Geom Anal 31, 1471–1509 (2021). https://doi.org/10.1007/s12220-019-00312-1
Received:
Published:
Issue Date:
Keywords
- Cheeger–Colding–Tian theory
- Conic Kahler–Einstein metrics
Mathematics Subject Classification
- 53C25