Skip to main content
Log in

Non-local Gehring Lemmas in Spaces of Homogeneous Type and Applications

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove a self-improving property for reverse Hölder inequalities with non-local right-hand side. We attempt to cover all the most important situations that one encounters when studying elliptic and parabolic partial differential equations. We present applications to non-local extensions of \(A_{\infty }\) weights and fractional elliptic divergence form equations. We write our results in spaces of homogeneous type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1996)

    Book  Google Scholar 

  2. Aimar, H., Iaffei, B., Nitti, L.: On the Macías-Segovia metrization of quasi-metric spaces. Rev. Union Mat. Argent. 41, 67–75 (1998)

    MATH  Google Scholar 

  3. Anderson, T., Hytönen, T., Tapiola, O.: Weak \(A_\infty \) weights and weak reverse Hölder property in a space of homogeneous type. J. Geom. Anal. 27(1), 95–119 (2017)

    Article  MathSciNet  Google Scholar 

  4. Auscher, P., Bortz, S., Egert, M., Saari, O.: On regularity of weak solutions to linear parabolic systems with measurable coefficients. J. Math. Pures Appl. 121, 216–243 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bernicot, F., Coulhon, T., Frey, D.: Gaussian heat kernel bounds through elliptic Moser iteration. J. Math. Pures Appl. 106(6), 995–1037 (2016)

    Article  MathSciNet  Google Scholar 

  6. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, vol. 17. European Mathematical Society (EMS), Zürich (2011)

    Book  Google Scholar 

  7. Elcrat, A., Meyers, N.: Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions. Duke Math. J. 42, 121–136 (1975)

    Article  MathSciNet  Google Scholar 

  8. Fujii, N.: Math. Jpn. 22(5), 529–534 (1977–1978)

  9. Gehring, F.W.: The \(L^{p}\)-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    Article  MathSciNet  Google Scholar 

  10. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  11. Giaquinta, M., Struwe, M.: On the partial regularity of weak solutions of nonlinear parabolic systems. Math. Z. 179(4), 437–451 (1982)

    Article  MathSciNet  Google Scholar 

  12. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)

    Book  Google Scholar 

  13. Heikkinen, T., Kinnunen, J., Nuutinen, J., Tuominen, H.: Mapping properties of the discrete fractional maximal operator in metric measure spaces. Kyoto J. Math. 53(3), 693–712 (2013)

    Article  MathSciNet  Google Scholar 

  14. Hytönen, T., Pérez, C., Rela, E.: Sharp reverse Hölder property for \(A_\infty \) weights on spaces of homogeneous type. J. Funct. Anal. 263(12), 3883–3899 (2012)

    Article  MathSciNet  Google Scholar 

  15. Iwaniec, T.: The Gehring Lemma, Quasiconformal Mappings and Analysis (Ann Arbor, MI, 1995). Springer, New York (1998)

    Google Scholar 

  16. Iwaniec, T., Nolder, C.A.: Hardy–Littlewood inequality for quasiregular mappings in certain domains in \({\mathbb{R}}^{n}\). Ann. Acad. Sci. Fenn. Ser. A 10, 267–282 (1985)

    MathSciNet  MATH  Google Scholar 

  17. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8(1), 57–114 (2015)

    Article  MathSciNet  Google Scholar 

  18. Kwaśnick, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1), 7–51 (2017)

    MathSciNet  Google Scholar 

  19. Macías, R.A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257–270 (1979)

    Article  MathSciNet  Google Scholar 

  20. Muckenhoupt, B.: Norm inequalities relating the Hilbert transform to the Hardy–Littlewood maximal function. Functional Analysis and Approximation (Oberwolfach 1980). International Series of Numerical Mathematics, vol. 60, pp. 219–231. Birkhäuser, Basel (1981)

    Google Scholar 

  21. Paluszyński, M., Stempak, K.: On quasi-metric and metric spaces. Proc. Am. Math. Soc. 137(12), 4307–4312 (2009)

    Article  MathSciNet  Google Scholar 

  22. Sawyer, E.T.: Norm inequalities relating singular integrals and the maximal function. Stud. Math. 75(3), 253–263 (1983)

    Article  MathSciNet  Google Scholar 

  23. Schikorra, A.: Nonlinear commutators for the fractional p-Laplacian and applications. Math. Ann. 366, 695–720 (2016)

    Article  MathSciNet  Google Scholar 

  24. Schikorra, A., Shieh, T.-T., Spector, D.: \(L^p\) theory for fractional gradient PDE with \(VMO\) coefficients. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26(4), 433–443 (2015)

    Article  MathSciNet  Google Scholar 

  25. Shieh, T.-T., Spector, D.: On a new class of fractional partial differential equations. Adv. Calc. Var. 8(4), 321–336 (2015)

    Article  MathSciNet  Google Scholar 

  26. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  27. Varopoulos, N., Saloff-Coste, L., Coulhon, T.: Analysis and geometry on groups. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  28. Wilson, J.M.: Weighted inequalities for the dyadic square function without dyadic \(A^\infty \). Duke Math. J. 55(1), 19–50 (1987)

    Article  MathSciNet  Google Scholar 

  29. Zatorska-Goldstein, A.: Very weak solutions of nonlinear subelliptic equations. Ann. Acad. Sci. Fenn. Math. 30(2), 407–436 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Tuomas Hytönen for an enlightening discussion on the topics of this work that led to the results extending the \(A_{\infty }\) class and Carlos Pérez for pointing out the connection to the \(C_p\) class. We also thank an anonymous referee for suggesting that our results should apply to the fractional divergence form equation of Shieh–Spector [25] rather than the toy model investigated in an earlier version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olli Saari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first and third authors were partially supported by the ANR project “Harmonic Analysis at its Boundaries,” ANR-12-BS01-0013. This material is based upon work supported by National Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the MSRI in Berkeley, California, during the Spring 2017 semester. The second author was supported by the NSF INSPIRE Award DMS 1344235. The third author was supported by a public grant as part of the FMJH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auscher, P., Bortz, S., Egert, M. et al. Non-local Gehring Lemmas in Spaces of Homogeneous Type and Applications. J Geom Anal 30, 3760–3805 (2020). https://doi.org/10.1007/s12220-019-00217-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00217-z

Keywords

Mathematics Subject Classification

Navigation