Skip to main content
Log in

Biconservative Submanifolds in \(\mathbb {S}^n\times \mathbb {R}\) and \(\mathbb {H}^n\times \mathbb {R}\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we study biconservative submanifolds in \(\mathbb {S}^n\times \mathbb {R}\) and \(\mathbb {H}^n\times \mathbb {R}\) with parallel mean curvature vector field and codimesion 2. We obtain some sufficient and necessary conditions for such submanifolds to be conservative. In particular, we obtain a complete classification of 3-dimensional biconservative submanifolds in \(\mathbb {S}^4\times \mathbb {R}\) and \(\mathbb {H}^4\times \mathbb {R}\) with nonzero parallel mean curvature vector field. We also get some results for biharmonic submanifolds in \(\mathbb {S}^n\times \mathbb {R}\) and \(\mathbb {H}^n\times \mathbb {R}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baird, P., Eells, J.: A Conservation Law for Harmonic Maps. Lecture Notes in Math, vol. 894. Springer, Berlin (1981)

    MATH  Google Scholar 

  2. Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P.: Surfaces in three-dimensional space forms with divergence-free stress-bienergy tensor. Ann. Mat. Pur. Appl. 193(2), 529–550 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carter, S., West, A.: Partial tubes about immersed manifolds. Geom. Dedicata 54, 145–169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, B.Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17(2), 169–188 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Dillen, F., Fastenakels, J., Van der Veken, J.: Rotation hypersurfaces in \(\mathbb{S}^n\times \mathbb{R}\) and \(\mathbb{H}^n\times \mathbb{R}\). Note Mat. 29, 41–54 (2008)

    Google Scholar 

  6. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86(1), 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fectu, D., Oniciuc, C., Pinheiro, A.L.: CMC biconservative surfaces in \(\mathbb{S}^n\times \mathbb{R} \) and \(\mathbb{H}^n\times \mathbb{R}\). J. Math. Anal. Appl. 425, 588–609 (2015)

    Article  MathSciNet  Google Scholar 

  8. Fu, Y.: On bi-conservative surfaces in Minkowski \(3\)-space. J. Geom. Phys. 66, 71–79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, Y.: Explicit classification of biconservative surfaces in Lorentz \(3\)-space forms. Ann. Mat. 194, 805–822 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fu, Y., Turgay, N.C.: Complete classification of biconservative hypersurfaces with diagonalizable shape operator in the Minkowski \(4\)-space. Int. J. Math. 27(5), 17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hasanis, T., Vlachos, I.: Hypersurfaces in \(\mathbb{E}^4\) with harmonic mean curvature vector field. Math. Nachr. 172, 145–169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hilbert, D.: Die grundlagen der physik. Math. Ann. 92, 1–32 (1924)

    Article  MathSciNet  Google Scholar 

  13. Jiang, G.Y.: \(2\)-harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 7, 389–402 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Jiang, G.Y.: The conservation law for \(2\)-harmonic maps between Riemannian manifolds. Acta Math. Sin. 30, 220–225 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I. Interscience, New York (1963)

    MATH  Google Scholar 

  16. Lira, J.H., Tojeiro, R., Vitório, F.: A Bonnet theorem for isometric immersions into products of space forms. Arch. Math. 95, 469–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Manfio, F., Tojeiro, R.: Hypersurfaces with constant sectional curvature in \(\mathbb{S}^n\times \mathbb{R}\) and \(\mathbb{H}^n\times \mathbb{R}\). Ill. J. Math. 55(1), 397–415 (2011)

    MATH  Google Scholar 

  18. Mendonça, B., Tojeiro, R.: Umbilical submanifolds of \(\mathbb{S}^n\times \mathbb{R}\). Can. J. Math. 66(2), 400–428 (2014)

    Article  MATH  Google Scholar 

  19. Montaldo, S., Oniciuc, C., Ratto, A.: Biconservative surfaces. J. Geom. Anal. 26, 313–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Montaldo, S., Oniciuc, C., Ratto, A.: Proper biconservative immersions into the Euclidean space. Ann. Mat. Pura Appl. 195, 403–422 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tojeiro, R.: On a class of hypersurfaces in \(\mathbb{S}^n\times \mathbb{R}\) and \(\mathbb{H}^n\times \mathbb{R}\). Bull. Braz. Math. Soc. (N. S.) 41(2), 199–209 (2010)

    Article  MathSciNet  Google Scholar 

  22. Turgay, N.C.: \(H\)-hypersurfaces with \(3\) distinct principal curvatures in the Euclidean spaces. Ann. Mat. Pura Appl. 194, 1795–1807 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Upadhyay, A., Turgay, N.C.: A classification of biconservative hypersurfaces in a pseudo-Euclidean space. J. Math. Anal. Appl. 444, 1703–1720 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The third author gratefully thanks for the support from the National Post-doctoral Fellowship of Science and Engineering Research Board (SERB), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Upadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manfio, F., Turgay, N.C. & Upadhyay, A. Biconservative Submanifolds in \(\mathbb {S}^n\times \mathbb {R}\) and \(\mathbb {H}^n\times \mathbb {R}\). J Geom Anal 29, 283–298 (2019). https://doi.org/10.1007/s12220-018-9990-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-9990-9

Keywords

Mathematics Subject Classification

Navigation