Skip to main content
Log in

Virtual Residue and an Integral Formalism

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We generalize Grothendieck’s residues \(Res\frac{\psi }{s}\) to virtual cases, namely cases when the zero loci of the section s has dimension larger than the expected dimension (zero). We also provide an exponential-type integral formalism for the virtual residue, which can be viewed as an analogue of the Mathai–Quillen formalism for localized Euler classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A Landau Ginzburg space is a pair (XW) of a complex manifold X and a holomorphic function \(W:X\rightarrow \mathbb {C}\) with compact critical locus.

  2. While certain Hodge theoretical properties of \((K_{\mathbb {P}^4},W)\) were discussed in [10].

  3. Contribution of constant maps to some integral defined over the space of all smooth degree zero maps from \({\mathbb P^1}\) to M.

  4. As a notation convention, we always denote [, ] for the graded commutator, that is for operators AB of degree |A| and |B|, the bracket is given by

    $$\begin{aligned}{}[A,B]=AB-(-1)^{|A||B|}BA. \end{aligned}$$

References

  1. Bruzzo, U., Rubtsov, V.: On localization in holomorphic equivariant cohomology. Central Eur. J. Math. 10(4), 1442–1454 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chang, H.L., Li, J.: Gromov-Witten invariants of stable maps with fields. Int. Math. Res. Not. 18, 4163–4217 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Chang, H.L., Li, J.: An algebraic proof of the hyperplane property of the genus one GW-invariants of quintics. J. Diff. Geom. 100(2), 251–299 (2015). arxiv:1206.5390

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, H.L., Li, J., Li, W.P.: Witten’s top Chern classes via cosection localization. Invent. Math. 200(3), 1015–1063 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, H.L., Li, J., Li, W.P., Liu, C.C.: Mixed-Spin-P fields of Fermat quintic polynomials. arXiv:1505.07532

  6. Chang, H.L., Li, J., Li, W.P., Liu, C.C.: Toward an effective theory of GW invariants of quintic threefolds. arXiv:1603.06184

  7. Chiodo, A.: A construction of Witten’s top Chern class in K-theory. Gromov-Witten theory of spin curves and orbifolds. Contemp. Math. 403, 21–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chiodo, A., Ruan, Y.B.: Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations. Invent. Math. 182(1), 117–165 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demailly, J.P.: Complex Analytic and Differential Geometry. Universit de Grenoble I, Saint-Martin d’Hères (1997)

    Google Scholar 

  10. Fan, H.J.: Schroedinger equation, deformation theory and \(tt^\ast \)-geometry. arxiv:1107.1290

  11. Fan, H.J., Jarvis, T.J., Ruan, Y.B.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. 178(1), 1–106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, H.J., Jarvis, T.J., Ruan, Y.B.: The Witten equation and its virtual fundamental cycle. arXiv:0712.4025

  13. Fan, H.J., Jarvis, T.J., Ruan, Y.B.: A mathematical theory of the gauged linear sigma model. arXiv:1506.02109

  14. Gaffney, P.: A special stokes’s theorem for complete Riemannian manifolds. Ann. Math. 2(60), 140–145 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  15. Griffiths, P., Harris, J.: Principles in Algebraic Geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  16. Jarvis, T.J., Kimura, T., Vaintrob, A.: Moduli spaces of higher spin curves and integrable hierarchies. Compos. Math. 126(2), 1571–212 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, C.Z., Li, S., Saito, K.: Primitive forms via polyvector fields. arXiv:1311.1659

  18. Liu, K.F.: Holomorphic equivariant cohomology. Math. Ann. 303(1), 125–148 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mathai, V., Quillen, D.: Superconnections, Thom classes, and equivariant differential forms. Topology 25(1), 85–110 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Royden, H., Fitzpatric, P.: Real Analysis, 4th edn. Macmillan, New York (2010)

    Google Scholar 

  21. Vafa, C.: Topological Landau-Ginzburg Models. Mod. Phys. Lett. A 06, 337 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Warner, H.: Foundations of Differentiable manifolds and lie groups. Graduate Text in Mathematics. Springer, New York (2010)

    Google Scholar 

  23. Wlodarczyk, J.: Resolution of singularities of analytic spaces. In: Proceedings of 15th Gökova Geometry-Topology Conference, pp. 31–63

  24. Wu, H.: Bochner’s skills in differential geometry (Part I). Adv. Math. (China) 10(1), 57–76 (1981)

    Google Scholar 

Download references

Acknowledgements

The authors thank Ugo Bruzzo, Jun Li, Eric Sharpe, Si Li, Qile Chen, Zheng Hua, Huijun Fan, Yongbin Ruan, Edward Witten for helpful discussions. Special thanks to Si Li for informing us the operators \(T_\rho ,R_\rho \) in section three. Finally, we would like to express our appreciation to the referee for pointing out how to improve the paper and providing many valuable suggestions in rewriting the manuscript to make the paper more readable. Partially supported by Hong Kong GRF Grant 16301515 and 16301717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-Lin Li.

Appendix: Operators and Metrics on Exterior Algebra \({\mathbf B}\)

Appendix: Operators and Metrics on Exterior Algebra \({\mathbf B}\)

Let V be a rank n holomorphic bundle over a complex manifold M. Recall in section three \({\mathbf B}:=\oplus _{i,j,k,l}\Omega ^{(i,j)}(\wedge ^k V \otimes \wedge ^l V^*)\) is a graded commutative algebra extending the wedge products of \(\Omega ^{*}, \wedge ^*V\), and \(\wedge ^*V^*\). The degree of \(\alpha \in \Omega ^{(i,j)}(\wedge ^k V \otimes \wedge ^l V^*)\) is \(\sharp \alpha :=i+j+k-l\). We brief \(A^0(\wedge ^k V \otimes \wedge ^l V^*)=\Omega ^{(0,0)}(\wedge ^k V \otimes \wedge ^l V^*)\).

Set \(\kappa :{\mathbf B}\rightarrow \Omega ^*\) which sends \(\omega (e\otimes e')\)(for \(\omega \in \Omega ^{(i,j)}, e\in \wedge ^k V, e'\in \wedge ^\ell V^*)\) to \(\omega \langle e,e'\rangle \), where \(\langle ,\rangle \) is the dual pairing between \(\wedge ^k V,\wedge ^k V^*\) and \(\langle e,e'\rangle =0\) when \(k\ne \ell \). We further extend the pairing by setting \(\langle \alpha ,\beta \rangle :=\kappa (\alpha \beta )\) for \(\alpha ,\beta \in {\mathbf B}\). It is direct to verify

$$\begin{aligned} \overline{\partial }\langle \alpha ,\beta \rangle =\langle \overline{\partial }\alpha ,\beta \rangle +(-1)^{\sharp \alpha }\langle \alpha ,\overline{\partial }\beta \rangle .\end{aligned}$$
(5.1)

We now define three different types of contraction maps. Given \(u\in \Omega ^{(i,j)}(\wedge ^k V)\) and \(k\ge \ell \), we define

$$\begin{aligned} u \lrcorner : \Omega ^{(p,q)}(\wedge ^{l}V^*)\longrightarrow \Omega ^{(p+i,q+j)}(\wedge ^{k-l}V) \end{aligned}$$
(5.2)

where for \(\theta \in \Omega ^{(p,q)}(\wedge ^{\ell }V^*)\), the \(u\lrcorner \theta \) is determined by

$$\begin{aligned} \langle u\lrcorner \theta ,\nu ^*\rangle =(-1)^{(i+j)l+(p+q)\sharp u+\frac{l(l-1)}{2}}\langle u,\theta \wedge \nu ^*\rangle ,\qquad \forall \nu ^*\in A^0(\wedge ^{k-l}V^*). \end{aligned}$$

Given \(\alpha \in A^0(V)\), we define

$$\begin{aligned} \iota _{\alpha } : \Omega ^{(i,j)}(\wedge ^{k}V^*) \longrightarrow \Omega ^{(i,j)}(\wedge ^{k-1}V^*) \end{aligned}$$
(5.3)

where for \(w\in \Omega ^{(i,j)}(\wedge ^{k}V^*)\), the \(\iota _{\alpha }(w)\) is determined by

$$\begin{aligned} \langle \nu ,\iota _{\alpha }(w)\rangle =\langle \alpha \wedge \nu ,w\rangle ,\qquad \forall \nu \in A^0(\wedge ^{k-1}V). \end{aligned}$$

For above \(\alpha \), \(\theta \), and w one has \(\iota _\alpha (w\wedge \theta )=\iota _\alpha (w)\wedge \theta +(-1)^{\sharp w}w\wedge \iota _\alpha (\theta ).\)

Given \(\gamma \in A^0(V^*)\), also define

$$\begin{aligned} \iota _{\gamma } : \Omega ^{(i,j)}(\wedge ^{k}V) \longrightarrow \Omega ^{(i,j)}(\wedge ^{k-1}V), \end{aligned}$$
(5.4)

for \(v\in \Omega ^{(i,j)}(\wedge ^{k}V)\), the \(\iota _{\gamma }(v)\) is determined by

$$\begin{aligned} \langle \iota _{\gamma }(v),w\rangle =(-1)^{i+j}\langle v,\gamma \wedge w\rangle , \qquad \forall w\in A^0(\wedge ^{k-1}V^*). \end{aligned}$$

We have the following identities. Because the proofs of the identities are standard, we omit them here.

Lemma 5.1

Given \(u\in \Omega ^{(i,j)}(\wedge ^n V)\), and \(\theta ,\alpha , \gamma \) as above, one has

$$\begin{aligned} \alpha \wedge (u\lrcorner \theta )=u\lrcorner (\iota _\alpha (\theta ) ), \iota _{\gamma }(u\lrcorner \theta )=u\lrcorner (\gamma \wedge \theta ). \end{aligned}$$

Lemma 5.2

For \(u\in \Omega ^{(i,j)} (\wedge ^k V), \theta \in \Omega ^{(p,q)} (\wedge ^\ell V^*)\), \(k\ge l\) and smooth form \(\alpha \in \Omega ^{(a,b)}(M)\), we have

$$\begin{aligned} \alpha \wedge (u\lrcorner \theta )= u\lrcorner (\alpha \theta ), \overline{\partial }(u\lrcorner \theta )=(-1)^{\sharp \theta }(\overline{\partial }u)\lrcorner \theta + u \lrcorner (\overline{\partial }\theta ). \end{aligned}$$

Now we study some simple metric inequalities on \({\mathbf B}\). Let h be a fixed hermitian metric over V. For arbitrary holomorphic local frame \(\{e_i\}\) of V with \(\{t^i\}\) its dual frame of \(V^*\), one represents \(h=\sum h_{i\bar{j}}t^i\otimes \bar{t}^j\). The induced metric \(h^*\) on \(V^*\) can be written as \(h^*=\sum h^{i\bar{j}}e_i\otimes \bar{e}_{j}\), where \(\sum h^{i\bar{k}}h_{j\bar{k}}=\delta _i^j\).

As in [22, p. 79 Ex 13], the induced metric \(h_{\wedge ^k V}\) on \(\wedge ^k V\) is

$$\begin{aligned} (\alpha _1\wedge \cdots \wedge \alpha _k,\beta _1\wedge \cdots \wedge \beta _k)_{h_{\wedge ^k V}}:=\det [h(\alpha _i,\beta _j)]. \end{aligned}$$

Similarly \(h^*\) induced metrics \(h^*_{\wedge ^l V^*}\) on \(\wedge ^l V^*\) and \(h_{\wedge ^k V}\otimes h_{\wedge ^l V}^*\) on \(\wedge ^k V\otimes \wedge ^l V^*\). The induced metric on \({\mathbf B}=\oplus _{i,j,k,l}\Omega ^{(i,j)}(\wedge ^k V \otimes \wedge ^l V^*)\) would be denoted by \((\cdot ,\cdot )\) and \(|\alpha |^2:=(\alpha ,\alpha )\) for \(\alpha \in {\mathbf B}\). We have the following inequality.

Lemma 5.3

For \(u\in \Omega ^{(n,0)}(\wedge ^k V)\) and \(v^*\in \Omega ^{(0,q)}(\wedge ^l V^*)\) with \(k\ge l\), one has

$$\begin{aligned} (u\lrcorner v^*,u\lrcorner v^*)\le & {} b(u,u) (v^*,v^*), \end{aligned}$$

where b depends on the ranks of the bundles correspond to \(\Omega ^{(0,q)}\otimes \wedge ^l V^*, \wedge ^{k-l}V^*\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, HL., Li, ML. Virtual Residue and an Integral Formalism. J Geom Anal 29, 83–104 (2019). https://doi.org/10.1007/s12220-018-9980-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-9980-y

Keywords

Mathematics Subject Classification

Navigation