Skip to main content
Log in

On Harmonic Measure and Rectifiability in Uniform Domains

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset \mathbb {R}^{d+1}\), \(d \ge 1\), be a uniform domain with lower d-Ahlfors–David regular and d-rectifiable boundary. We show that if the d-Hausdorff measure \(\mathcal {H}^d|_{\partial \Omega }\) is locally finite, then \(\mathcal {H}^d|_{\partial \Omega }\) is absolutely continuous with respect to harmonic measure for \(\Omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akman, M., Badger, M., Hofmann, S., Martell, J.M.: Rectifiability and elliptic measures on \(1\)-sided NTA domains with Ahlfors–David regular boundaries. Trans. Am. Math. Soc. 369, 5711–5745 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azzam, J.: Sets of absolute continuity for harmonic measure in NTA domains. Potential Anal. 45(3), 403–433 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azzam, J., Hofmann, S., Martell, J.M., Nyström, K., Toro, T.: A new characterization of chord-arc domains. J. Eur. Math. Soc. 19(4), 967–981 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azzam, J., Mourgoglou, M., Tolsa, X.: Singular sets for harmonic measure on locally flat domains with locally finite surface measure. Int. Math. Res. Not. 2017(12), 3751–3773 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Badger, M.: Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited. Math. Z. 270(1–2), 241–262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bishop, C.J., Jones, P.W.: Harmonic measure and arclength. Ann. of Math. 132(3), 511–547 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bortz, S., Hofmann, S.: Harmonic measure and approximation of uniformly rectifiable sets. Rev. Mat. Iberoam. 33(1), 351–373 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christ, M.: A \(T(b)\) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60(2), 601–628 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dahlberg, B.E.J.: Estimates of harmonic measure. Arch. Ration. Mech. Anal. 65(3), 275–288 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. David, G.: Morceaux de graphes lipschitziens et intégrales singulières sur une surface. Rev. Mat. Iberoam. 4(1), 73–114 (1988)

    Article  MATH  Google Scholar 

  11. David, G., Jerison, D.: Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals. Indiana Univ. Math. J. 39(3), 831–845 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. David, G., Semmes, S.W.: Singular integrals and rectifiable sets in \({ R}^n\): beyond Lipschitz graphs. Astérisque 193, 152 (1991)

    Google Scholar 

  13. David, G., Semmes, S.W.: Analysis of and on Uniformly Rectifiable Sets. Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence, RI (1993)

    Book  MATH  Google Scholar 

  14. Hofmann, S., Martell, J.M.: Uniform rectifiability and harmonic measure I: uniform rectifiability implies poisson kernels in \(L^{p}\). Ann. Sci. Ecol. Norm. Sup. 47(3), 577–654 (2014)

    Article  MATH  Google Scholar 

  15. Hofmann, S., Martell, J.M.: Uniform rectifiability and harmonic measure, IV: Ahlfors regularity plus Poisson kernels in \(L^p\) impies uniform rectifiability. arXiv:1505.06499 (2015)

  16. Hofmann, S., Le, P., Martell, J.M., Nyström, K.: The weak-\(A_\infty \) property of harmonic and \(p\)-harmonic measures implies uniform rectifiability. Anal. PDE 10(3), 653–694 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hofmann, S., Martell, J.M., Uriarte-Tuero, I.: Uniform rectifiability and harmonic measure, II: Poisson kernels in \(L^p\) imply uniform rectifiability. Duke Math. J. 8, 1601–1654 (2014)

    Article  MATH  Google Scholar 

  18. Hytönen, T., Martikainen, H.: Non-homogeneous \(Tb\) theorem and random dyadic cubes on metric measure spaces. J. Geom. Anal. 22(4), 1071–1107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jerison, D.S., Kenig, C.E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lavrentiev, M.: Boundary problems in the theory of univalent functions (Russian), Math Sb. 43, 815–846 (1936). AMS Transl. Series 32, 1–35 (1936)

  21. Mattila, P.: Geometry of sets and measures in Euclidean spaces. In: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)

  22. Mourgoglou, M., Tolsa, X.: Harmonic measure and Riesz transform in uniform and general domains, to appear in J. Reine Angew. Math. arXiv:1509.08386 (2015)

  23. Riesz, F., Riesz, M.: Über Randwerte einer analytischen Functionen. In: Compte rendu du quatrième Congrès des Mathématiciens Scandinaves: tenu à Stockholm du 30 août au 2 Septembre 1916, pp. 27–44. Malmö (1955)

  24. Wolff, T.H.: Counter Examples with Harmonic Gradients in \({ R}^3\). Essays on Fourier Analysis in Honor of Elias M. Stein. Mathematics Series, vol. 42, pp. 321–384. Princeton University Press, Princeton (1991)

    Google Scholar 

  25. Wu, J.-M.: On singularity of harmonic measure in space. Pac. J. Math 121(no. 2), 485–496 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ziemer, W.: Some remarks on harmonic measure in space. Pac. J. Math. 55(2), 629–637 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We warmly thank J. Azzam and X. Tolsa for their encouragement and several discussions pertaining to this work and rectifiability. We are particularly grateful to J. Azzam for explaining the techniques developed in his earlier work on the same topic. We would also like to thank the anonymous referees for their valuable comments that helped us improve the paper. The current manuscript was finished and uploaded on ArXiv in mid-2015 when the author was a post-doc of X. Tolsa at Universitat Autònoma de Barcelona supported by the ERC Grant 320501 of the European Research Council (FP7/2007–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihalis Mourgoglou.

Additional information

In memory of G. I. Chatzopoulos.

The author was supported by the ERC Grant 320501 of the European Research Council (FP7/2007–2013) and by IKERBASQUE, and was partially supported by the Grant IT-641-13 (Basque Government).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourgoglou, M. On Harmonic Measure and Rectifiability in Uniform Domains. J Geom Anal 29, 1193–1205 (2019). https://doi.org/10.1007/s12220-018-0035-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-0035-1

Mathematics Subject Classification

Navigation