Skip to main content
Log in

Monotonicity of Eigenvalues and Functionals Along the Ricci–Bourguignon Flow

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we first prove the monotonicity of the lowest eigenvalue of the Schrödinger operator

$$\begin{aligned} \frac{(1-(n-1)\rho )^2}{1-2(n-1)\rho }R-4\varDelta \end{aligned}$$

along the Ricci–Bourguignon flow

$$\begin{aligned} \frac{\partial \mathrm {g}}{\partial t}=-2(\mathrm {Ric}-\rho R\mathrm {g}) \end{aligned}$$

based on an evolving formula of the \(\mathcal {F}_{\rho }\)-functional, and rule out nontrivial steady breathers. Then we prove the monotonicity of the lowest eigenvalue of the Schrödinger operator \(BR-4\varDelta \) along the Ricci–Bourguignon flow for any constant B satisfying

$$\begin{aligned} B\ge \frac{4(1-(n-1)\rho )^2-n\rho }{4(1-2(n-1)\rho )}>0 \end{aligned}$$

for the case that \(\rho \le 0.\) We also study the evolving formula of the \(\mathcal {W}_{\rho }\)-functional and get the monotonicity of the infimum of the \(\mathcal {W}_{\rho }\)-functional, based on which we can prove that a shrinking breather should be an Einstein metric for the case that \(\rho <0.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brendle, S.: Convergence of the Yamabe flow for arbitrary initial energy. J. Differ. Geom. 69(2), 217–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, X.D.: Eigenvalues of \(-\triangle +\frac{1}{2}R\) on manifolds with nonnegative curvature operator. Math. Ann. 337(2), 435–441 (2007)

    Article  MathSciNet  Google Scholar 

  3. Cao, X.D.: First eigenvalues of geometric operators under the Ricci flow. Proc. Am. Math. Soc. 136(11), 4075–4078 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, X.D.: Differential Harnack estimates for backward heat equations with potentials under the Ricci flow. J. Funct. Anal. 255(4), 1024–1038 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, X.D., Hou, S.B., Ling, J.: Estimate and monotonicity of the first eigenvalue under the Ricci flow. Math. Ann. 354(2), 451–463 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C., Mazzieri, L.: The Ricci–Bourguignon flow. Pac. J. Math. 287(2), 337–370 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications: Part II: Analytic Aspects. Mathematical Surveys and Monographs, vol. 144. American Mathematical Society (2008)

  8. Fang, S.W., Xu, H.F., Zhu, P.: Evolution and monotonicity of eigenvalues under the Ricci flow. Sci. China Math. 58(8), 1–8 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamilton, R.S.: The Harnack estimate for the Ricci flow. J. Differ. Geom. 37(1), 225–243 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12(5), 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J.-F.: Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann. 338(4), 927–946 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Müller, R.: Differential Harnack inequalities and the Ricci flow. EMS Series of Lectures in Mathematics. European Mathematical Society, Zurich (2006)

  14. Müller, R.: Ricci flow coupled with harmonic map heat flow. PhD Thesis, ETH Zurich, No. 18290 (2009)

  15. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159 (2002)

  16. Pigola, S., Rigoli, M., Rimoldi, M.: Ricci almost solitons. Ann. Della Scuola Normale Superiore Di Pisa-Classe Di Sci. 10(4), 757–799 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Rothaus, O.S.: Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42(1), 110–120 (1981)

    Article  MATH  Google Scholar 

  18. Wang, L.F.: Differential Harnack inequalities under a coupled Ricci flow. Math. Phys. Anal. Geom. 15(4), 343–360 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, E.-M., Zheng, Y.: Regularity of the first eigenvalue of the \(p\)-Laplacian and Yamabe invariant along geometric flows. Pac. J. Math. 254(1), 239–255 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, J.Y., Wang, E.-M., Zheng, Y.: First eigenvalue of the \(p\)-Laplace operator along the Ricci flow. Ann. Glob. Anal. Geom. 38(1), 27–55 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ye, R.: Global existence and convergence of Yamabe flow. J. Differ. Geom. 39(1), 35–50 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeng, F., He, Q., Chen, B.: Monotonicity of eigenvalues of geometric operators along the Ricci–Bourguignon flow. arXiv:math.DG/1512.08158v1 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L.F. Monotonicity of Eigenvalues and Functionals Along the Ricci–Bourguignon Flow. J Geom Anal 29, 1116–1135 (2019). https://doi.org/10.1007/s12220-018-0030-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-0030-6

Keywords

Mathematics Subject Classification

Navigation