Skip to main content
Log in

Ricci Flow on a Class of Noncompact Warped Product Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider the Ricci flow on noncompact \(n+1\)-dimensional manifolds M with symmetries, corresponding to warped product manifolds \(\mathbb {R}\times T^n\) with flat fibres. We show longtime existence and that the Ricci flow solution is of type III, i.e. the curvature estimate \(|{{\mathrm{Rm}}}|(p,t) \le C/t\) for some \(C > 0\) and all \(p \in M, t \in (1,\infty )\) holds. We also show that if M has finite volume, the solution collapses, i.e. the injectivity radius converges uniformly to 0 (as \(t \rightarrow \infty \)) while the curvatures stay uniformly bounded, and furthermore, the solution converges to a lower dimensional manifold. Moreover, if the (n-dimensional) volumes of hypersurfaces coming from the symmetries of M are uniformly bounded, the solution converges locally uniformly to a flat cylinder after appropriate rescaling and pullback by a family of diffeomorphisms. Corresponding results are also shown for the normalized (i.e. volume preserving) Ricci flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. \(T^n\) denotes the n-dimensional torus.

  2. See the Appendix.

  3. That is, if O is an orbit, \(p \in O\) and if we consider the action of G restricted to O, then the induced representation of the isotropy group \(G_p \subset G\) on \(T_p O\) is irreducible.

  4. That is, \(k+g^2 g_{T^n}(x,q)(a+v,b+w) = k(x)(a,b) + g^2 (x)g_{T^n}(q) (v,w)\) for all \(x \in \mathbb {R}, q \in T^n\) and all \(a,b \in T_x \mathbb {R}, v,w \in T_q T^n\) (where we identified \(T_{(x,q)} (\mathbb {R}\times T^n) \cong T_x \mathbb {R}\oplus T_q T^n\)).

  5. More precisely, \(h(t), t \in [0,T_{\max })\) is the unique maximal solution of the Ricci flow in the class of families of metrics \(\widehat{h}(t), t \in [0,T)\), where \(0 < T \le \infty \), such that \(\widehat{h}(t)\) is complete for all \(t \in [0,T)\), \(\sup _{x \in M, t \in [0,S]}|{{\mathrm{Rm}}}_{\widehat{h}(t)}|_{\widehat{h}(t)}(x) < \infty \) for all \(0< S < T\) (i.e. the curvatures are bounded, when the family is restricted to a compact time interval) and \(\widehat{h}(0) = h_0\).

  6. In this case the orbits have to be replaced by sets \(\{x\} \times T^n\), where \(x \in \mathbb {R}\).

  7. Compare this and the next paragraph also with the introduction in [32] by Lott and Sesum.

  8. Here “orthogonal” means that the plane contains the direction orthogonal to O.

  9. Here and in the following we identify \(M/G \cong \mathbb {R}\), and the second component of the expression \(|K_V|(x,0)\) refers to time \(t = 0\).

  10. This time parametrized over O instead of \(M/G \times O\).

  11. Not every flat metric \(g_{T^n}\) can occur in (3.2): a necessary condition is that the isometry group of \((T^n, g_{T^n})\) acts isotropy irreducibly, which is for example not the case for \(\mathbb {R}^2/(\mathbb {Z}\times 2\mathbb {Z})\).

  12. The words “orbit” and “orbit space” are w.r.t. the induced G-action on \(\mathbb {R}\times T^n\), i.e. by (3.1) and the definition of \(\phi \) the orbits are the sets \(\{x\} \times T^n\), where \(x \in \mathbb {R}\), and the orbit space can be identified with \(\mathbb {R}\); in case \(k + g^2 g_{T^n}\) is not of the form (3.2), i.e. is not the pullback of a G-invariant metric under \(\phi \), by “orbit” we also mean a set \(\{x\} \times T^n\) and by “orbit space” we mean \(\mathbb {R}\).

  13. Here \(g_{\mathbb {R}^n}\) denotes the standard metric on \(\mathbb {R}^n\).

References

  1. Angenent, S., Knopf, D.: An example of neckpinching for Ricci flow on \(S^{n+1}\). Math. Res. Lett. 11(4), 493–518 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angenent, S., Knopf, D.: Precise asymptotics of the Ricci flow neckpinch. Commun. Anal. Geom. 15(4), 773–844 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angenent, S., Isenberg, J., Knopf, D.: Formal matched asymptotics for degenerate Ricci flow neckpinches. Nonlinearity 24, 2265–2280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bahuaud, E., Woolgar, E.: Asymptotically hyperbolic normalized Ricci flow and rotational symmetry, arXiv:1506.06806v1 [math.DG]

  5. Bamler, R.H.: Long-time behavior of 3 dimensional Ricci flow—Introduction, arXiv:1411.6658v2 [math.DG]

  6. Bamler, R.H.: Long-time behavior of 3 dimensional Ricci flow—A: Generalizations of Perelman’s long-time estimates, arXiv:1411.6655v2 [math.DG]

  7. Bamler, R.H.: Long-time behavior of 3 dimensional Ricci flow—B: Evolution of the minimal area of simplicial complexes under Ricci flow, arXiv:1411.6649v2 [math.DG]

  8. Bamler, R.H.: Long-time behavior of 3 dimensional Ricci flow—C: 3-manifold topology and combinatorics of simplicial complexes in 3-manifolds, arXiv:1411.6647v2 [math.DG]

  9. Bamler, R.H.: Long-time behavior of 3 dimensional Ricci flow—D: Proof of the main results, arXiv:1411.6642v2 [math.DG]

  10. Bishop, R., Crittenden, R.: Geometry of Manifolds. Academic Press, New York (1964)

    MATH  Google Scholar 

  11. Cao, X.: Isoperimetric estimate for the Ricci flow on \(S^2 \times S^1\). Commun. Anal. Geom. 13(4), 727–739 (2005)

    Article  Google Scholar 

  12. Carfora, M., Isenberg, J., Jackson, M.: Convergence of the Ricci flow for metrics with indefinite Ricci curvature. J. Differ. Geom. 31, 249–263 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, B.-L., Zhu, X.-P.: Uniqueness of the Ricci flow on complete noncompact manifolds. J. Differ. Geom. 74, 119–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow, Graduate Studies in Mathematics, vol. 77. American Mathematical Society (2006)

  15. Fang, F., Zhang, Y., Zhang, Z.: Non-singular solutions to the normalized Ricci flow equation. Math. Ann. 340, 647–674 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang, F., Zhang, Y., Zhang, Z.: Non-singular solutions of normalized Ricci flow on noncompact manifolds of finite volume. J. Geom. Anal. 20(3), 592–608 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gu, H.-L., Zhu, X.-P.: The existence of type II singularities for the Ricci flow on \(S^{n+1}\). Commun. Anal. Geom. 16(3), 467–494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hamilton, R.: The formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hamilton, R.: Non-singular solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 7(4), 695–729 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hamilton, R., Isenberg, J.: Quasi-convergence of Ricci flow for a class of metrics. Commun. Anal. Geom. 1(3–4), 543–559 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hilaire, C.: The long-time behavior of the Ricci tensor under the Ricci flow. Geometry (2013). https://doi.org/10.1155/2013/235436

  23. Hsu, S.-Y.: Maximum principle and convergence of fundamental solutions for the Ricci flow. Tokyo J. Math. 32(2), 501–516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Isenberg, J., Knopf, D., Sesum, N.: Ricci flow neckpinches without rotational symmetry. Commun. Partial Differ. Equ. 41(12), 1860–1894 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ivey, T.A.: The Ricci flow on radially symmetric \({\mathbb{R}^{3}}\). Commun. Partial Differ. Equ. 19, 1481–1500 (1994)

    Article  MATH  Google Scholar 

  26. Knopf, D.: Quasi-convergence of the Ricci flow. Commun. Anal. Geom. 8(2), 375–391 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Knopf, D.: Convergence and stability of locally \({\mathbb{R}^{N}}\) -invariant solutions of Ricci flow. J. Geom. Anal. 19(4), 817–846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kobayashi, S.: Transformation Groups in Differential Geometry. Springer, Berlin (1995) (reprint of the 1972 edition)

  29. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  30. Lott, J.: On the long-time behavior of type-III Ricci flow solutions. Math. Annalen 339, 627–666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lott, J.: Dimensional reduction and the long-time behavior of Ricci flow. Comment. Math. Helv. 85, 485–534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lott, J., Sesum, N.: Ricci flow on three-dimensional manifolds with symmetry. Comment. Math. Helv. 89, 1–32 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma, L., Xu, X.: Ricci flow with hyperbolic warped product metrics. Math. Nach. 284, 739–746 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oliynyk, T.A., Woolgar, E.: Rotationally symmetric Ricci flow on asymptotically flat manifolds. Commun. Anal. Geom. 15(3), 535–568 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Academic Press (1983)

  36. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159v1 [math.DG]

  37. Perelman, G.: Ricci flow with surgery on three-manifolds, arXiv:math/0303109v1 [math.DG]

  38. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math/0307245v1 [math.DG]

  39. Rotman, R.: The length of a shortest geodesic loop at a point. J. Differ. Geom. 78, 497–519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shi, W.-X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30, 223–301 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shi, W.-X.: Ricci deformation of the metric on complete noncompact Riemannian manifolds. J. Differ. Geom. 30, 303–394 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shi, W.-X.: Ricci flow and the uniformization on complete noncompact Kähler manifolds. J. Differ. Geom. 45, 94–220 (1997)

    Article  MATH  Google Scholar 

  43. Simon, M.: A class of Riemannian manifolds that pinch when evolved by Ricci flow. Manuscr. Math. 101(1), 89–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Topping, P.: Lectures on the Ricci flow, http://homepages.warwick.ac.uk/~maseq/RFnotes.html

  45. Tran, H.: Harnack estimates for Ricci flow on a warped product. J. Geom. Anal. 26, 1838–1862 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was mostly carried out as part of my doctoral thesis, and at this point I would like to cordially thank my advisor Klaus Ecker! Also many thanks to Ahmad Afuni, Richard Bamler, Theodora Bourni, Bernhard Brehm, Bernold Fiedler, Lutz Habermann, Adrian Hammerschmidt, Gerhard Huisken, Tom Ilmanen, Felix Jachan, Dan Knopf, Ananda Lahiri, Markus Röser, Andreas Savas-Halilaj, Lars Schäfer, Oliver Schnürer, Felix Schulze, Brian Smith and Elmar Vogt! I also thank the SFB 647 “Space–Time–Matter. Analytic and Geometric Structures” of the DFG (German Research Foundation) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Marxen.

Appendix

Appendix

We show that the G-action on M descends to a G-action on \(M/T^n\): G is the semidirect product \(\mathrm {O}(n,\mathbb {Z}) \ltimes T^n\), where \(\mathrm {O}(n,\mathbb {Z})\) denotes the symmetry group of the n-cube, i.e. the group of all orthogonal \(n \times n\)-matrices with integral entries. The group structure of \(\mathrm {O}(n,\mathbb {Z}) \ltimes T^n\) is given by

$$\begin{aligned} (B,b) \circ (A,a) := (BA,Ba+b), \end{aligned}$$

where \(A,B \in \mathrm {O}(n,\mathbb {Z})\) and \(a,b \in T^n\).

Now let O be an orbit w.r.t. the \(T^n\)-action and let \(p,q \in O\), i.e. \(q = (I_n,c) \cdot p\) for some \(c \in T^n\), where \(I_n\) denotes the identity \(n \times n\)-matrix. Then, for any \((A,a) \in \mathrm {O}(n,\mathbb {Z}) \ltimes T^n\),

$$\begin{aligned} (A,a) \cdot q&= (A,a) \cdot ((I_n,c) \cdot p) = ((A,a) \circ (I_n,c)) \cdot p = (A,Ac+a) \cdot p \\&= ((I_n,Ac) \circ (A,a)) \cdot p = (I_n,Ac) \cdot ((A,a) \cdot p). \end{aligned}$$

Hence \((A,a) \cdot p,(A,a) \cdot q\) belong to the same \(T^n\)-orbit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marxen, T. Ricci Flow on a Class of Noncompact Warped Product Manifolds. J Geom Anal 28, 3424–3457 (2018). https://doi.org/10.1007/s12220-017-9964-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9964-3

Keywords

Mathematics Subject Classification

Navigation