Skip to main content
Log in

Intrinsic Structures of Certain Musielak–Orlicz Hardy Spaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For any \(p\in (0,\,1]\), let \(H^{\Phi _p}(\mathbb {R}^n)\) be the Musielak–Orlicz Hardy space associated with the Musielak–Orlicz growth function \(\Phi _p\), defined by setting, for any \(x\in \mathbb {R}^n\) and \(t\in [0,\,\infty )\),

$$\begin{aligned}&\Phi _{p}(x,\,t)\\&\quad := {\left\{ \begin{array}{ll} \displaystyle \frac{t}{\log {(e+t)}+[t(1+|x|)^n]^{1-p}}&{} \quad \text {when}\ n(1/p-1)\notin \mathbb N \cup \{0\},\\ \displaystyle \frac{t}{\log (e+t)+[t(1+|x|)^n]^{1-p}[\log (e+|x|)]^p}&{} \quad \text {when}\ n(1/p-1)\in \mathbb N\cup \{0\}, \end{array}\right. } \end{aligned}$$

which is the sharp target space of the bilinear decomposition of the product of the Hardy space \(H^p(\mathbb {R}^n)\) and its dual. Moreover, \(H^{\Phi _1}(\mathbb {R}^n)\) is the prototype appearing in the real-variable theory of general Musielak–Orlicz Hardy spaces. In this article, the authors find a new structure of the space \(H^{\Phi _p}(\mathbb {R}^n)\) by showing that, for any \(p\in (0,\,1]\), \(H^{\Phi _p}(\mathbb {R}^n)=H^{\phi _0}(\mathbb {R}^n) +H_{W_p}^p({{{\mathbb {R}}}^n})\) and, for any \(p\in (0,\,1)\), \(H^{\Phi _p}(\mathbb {R}^n)=H^{1}(\mathbb {R}^n) +H_{W_p}^p({{{\mathbb {R}}}^n})\), where \(H^1(\mathbb {R}^n)\) denotes the classical real Hardy space, \(H^{\phi _0}({{{\mathbb {R}}}^n})\) the Orlicz–Hardy space associated with the Orlicz function \(\phi _0(t):=t/\log (e+t)\) for any \(t\in [0,\infty )\), and \(H_{W_p}^p(\mathbb {R}^n)\) the weighted Hardy space associated with certain weight function \(W_p(x)\) that is comparable to \(\Phi _p(x,1)\) for any \(x\in \mathbb {R}^n\). As an application, the authors further establish an interpolation theorem of quasilinear operators based on this new structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)

    MATH  Google Scholar 

  2. Bonami, A., Cao, J., Ky, L.D., Liu, L., Yang, D., Yuan, W.: A complete solution to bilinear decompositions of products of Hardy and Campanato spaces. Preprint

  3. Bonami, A., Feuto, J., Grellier, S.: Endpoint for the DIV-CURL lemma in Hardy spaces. Publ. Mat. 54, 341–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonami, A., Grellier, S., Ky, L.D.: Paraproducts and products of functions in \({\rm BMO}({\mathbb{R}}^{\mathit{n}})\) and \(H^1({\mathbb{R}}^{\mathit{n}})\) through wavelets. J. Math. Pures Appl. 97(9), 230–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.: On the product of functions in BMO and \(H^1\). Ann. Inst. Fourier (Grenoble) 57, 1405–1439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coifman, R.R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72(9), 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–195 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. García-Cuerva, J.: Weighted \(H^p\) spaces. Dissertationes Math. (Rozprawy Mat.) 162, 1–63 (1979)

    MATH  Google Scholar 

  9. Grafakos, L.: Classical Fourier Analysis, Second edition, Graduate Texts in Mathematics, vol. 249. Springer, New York (2008)

    Google Scholar 

  10. Janson, S.: Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math. J. 47, 959–982 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, R., Yang, D.: New Orlicz-Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258, 1167–1224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ky, L.D.: Bilinear decompositions and commutators of singular integral operators. Trans. Am. Math. Soc. 365, 2931–2958 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ky, L.D.: New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integr. Equ. Operator Theor. 78, 115–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang, Y., Yang, D.: Musielak-Orlicz Campanato spaces and applications. J. Math. Anal. Appl. 406, 307–322 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, L., Chang, D.-C., Fu, X., Yang, D.: Endpoint boundedness of commutators on spaces of homogeneous type. Appl. Anal. 96, 2408–2433 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lu, S.: Four Lectures on Real \(H^p\) Spaces. World Scientific Publishing Co. Inc, River Edge, NJ (1995)

    Book  MATH  Google Scholar 

  17. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ (1993)

  18. Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables. I. The theory of \(H^p\)-spaces. Acta Math. 103, 25–62 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  19. Strömberg, J.-O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J. 28, 511–544 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Mathematics 1381. Springer, Berlin (1989)

  21. Viviani, B.: An atomic decomposition of the predual of \(BMO(\rho )\). Rev. Mat. Iberoamericana 3, 401–425 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, D., Yang, S.: Local Hardy spaces of Musielak-Orlicz type and their applications. Sci. China Math. 55, 1677–1720 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, D., Liang, Y., Ky, L.D.: Real-Variable Theory of Musielak-Orlicz Hardy Spaces. Lecture Notes in Mathematics 2182. Springer, Cham (2017)

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos. 11501506, 11771446, 11471042, 11571039, and 11671185). Jun Cao was partially supported by the Natural Science Foundation of Zhejiang University of Technology (Grant No. 2014XZ011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Liu, L., Yang, D. et al. Intrinsic Structures of Certain Musielak–Orlicz Hardy Spaces. J Geom Anal 28, 2961–2983 (2018). https://doi.org/10.1007/s12220-017-9943-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9943-8

Keywords

Mathematics Subject Classification

Navigation