Effect of Differential Rotation of Oscillating Inner Core on Steady Flow Instability in a Rotating Sphere

Abstract

A comparative analysis of steady flow excited by an oscillating core in a rotating spherical cavity with a liquid is carried out in different cases: when the core is free and performs differential rotation, and when the core differential rotation is absent. In the cavity reference frame the core, whose density is less than the density of the liquid, oscillates near the cavity center under the action of transverse to the rotation axis external force field. In both cases, the oscillations lead to the appearance of almost two-dimensional axisymmetric azimuthal steady flow, with several inflection points in the velocity profile. An increase in the amplitude of core oscillations leads to a loss of stability of the axisymmetric flow. In the supercritical region, there is a series of threshold transitions associated with various instability modes. The instability manifests itself in the development of an azimuthal periodic system of vortices elongated parallel to the rotation axis. The modes differ in an azimuthal wavenumber, the location of the vortices (distance from the axis of rotation), and the azimuthal drift rate of the vortex system relative to the cavity. It is shown that the core differential rotation modifies the azimuthal velocity profile, resulting in a change in the instability thresholds. Due to an additional azimuthal flow, the drift velocity of the same type vortices in the two cases is different. The effect of the core differential rotation on the dispersion relations for various instability modes has been investigated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Aleksandrov, V., Kopysov, S., Tonkov, L.: Vortex flows in the liquid layer and droplets on a vibrating flexible plate. Microgravity Sci. Technol. 30, 85–93 (2018)

    Article  Google Scholar 

  2. Barbosa Aguiar, A.C., Read, P.L., Wordsworth, R.D., Salter, T., Yamazaki, Y.H.: A laboratory model of Saturn’s north polar hexagon. Icarus. 206(2), 755–763 (2010)

    Article  Google Scholar 

  3. Calkins, M.A., Noir, J., Eldredge, J.D., Aurnou, J.M.: Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids. 22, 086602 (2010)

    Article  Google Scholar 

  4. Favier, B., Barker, A., Baruteau, C., Ogilvie, G.: Nonlinear evolution of tidally forced inertial waves in rotating fluid bodies. Mon. Not. R. Astron. Soc. 439, 845–860 (2014)

    Article  Google Scholar 

  5. Fernandez, J., Sánchez, P.S., Tinao, I., Porter, J., Ezquerro, J.M.: The CFVib experiment: control of fluids in microgravity with vibrations. Microgravity Sci. Technol. 29, 351–364 (2017)

    Article  Google Scholar 

  6. Hide, R., Titman, C.W.: Detached shear layers in a rotating fluid. J. Fluid Mech. 29, 39–60 (1967)

    Article  Google Scholar 

  7. Hollerbach, R., Futterer, B., More, T., Egbers, C.: Instabilities of the Stewartson layer – part 2. Supercritical mode transitions. Theor. Comput. Fluid Dyn. 18, 197–204 (2004)

    Article  Google Scholar 

  8. Karpunin, I.E., Kozlova, A.N., Kozlov, N.V.: Behavior of a light solid in a rotating horizontal cylinder with liquid under vibration. Microgravity Sci. Technol. 30, 399–409 (2018)

    Article  Google Scholar 

  9. van de Konijnenberg, J.A., Nielsen, A.H., Rasmussen, J.J., Stenum, B.: Shear-flow instability in a rotating fluid. J. Fluid Mech. 387, 177–204 (1999)

    MathSciNet  Article  Google Scholar 

  10. Kozlov, N.: Theory of the vibrational hydrodynamic top. Acta Astr. 114, 123–129 (2015)

    Article  Google Scholar 

  11. Kozlov, V.G., Ivanova, A.A.: Dramatic effect of vibrations on dynamics of rotating hydrodynamic systems. Microgravity Sci. Technol. 21, 339–348 (2009)

    Article  Google Scholar 

  12. Kozlov, V.G., Kozlov, N.V.: Vibrational hydrodynamic gyroscope. Dokl. Phys. 52(8), 458–461 (2007)

    Article  Google Scholar 

  13. Kozlov, V.G., Kozlov, N.V., Subbotin, S.V.: Motion of fluid and a solid core in a spherical cavity rotating in an external force field. Dokl. Phys. 59(1), 40–44 (2014a)

    Article  Google Scholar 

  14. Kozlov, V.G., Kozlov, N.V., Subbotin, S.V.: Taylor column instability in the problem of a vibrational hydrodynamic top. Phys. Rev. E. 90(1), 013029 (2014b)

    Article  Google Scholar 

  15. Kozlov, V.G., Kozlov, N.V., Subbotin, S.V.: Influence of an external force field on the dynamics of a free core and fluid in a rotating spherical cavity. Phys. Fluids. 27(7), 074106 (2015)

    Article  Google Scholar 

  16. Kozlov, V.G., Kozlov, N.V., Subbotin, S.V.: Steady flows excited by circular oscillations of free inner core in rotating spherical cavity. Eur. J. Mech. B-Fluid. 58(4), 85–94 (2016)

    Article  Google Scholar 

  17. Kozlov, V.G., Kozlov, N.V., Subbotin, S.V.: Instabilities and pattern formation in rotating spherical cavity with oscillating inner core. Eur. J. Mech. B-Fluid. 63(3), 39–46 (2017)

    Article  Google Scholar 

  18. Kozlov, V., Rysin, K., Vjatkin, A.: Vibroconvective stability of liquid in horizontal plane layer subject to circular translational vibrations. Microgravity Sci. Technol. 31, 759–765 (2019)

    Article  Google Scholar 

  19. Kozlov, V.G., Subbotin, S.V.: Steady flows generated by a core oscillating in a rotating spherical cavity. J. Appl. Mech. Tech. Phys. 59(1), 22–31 (2018)

    Article  Google Scholar 

  20. Kozlov, V., Subbotin, S., Shiryaeva, M.: Instabilities of steady flow in a rotating spherical cavity excited by inner core oscillation. Microgravity Sci. Technol. 31, 775–782 (2019)

    Article  Google Scholar 

  21. Lappa, M.: Assessment of the role of axial vorticity in the formation of particle accumulation structures (PAS) in supercritical Marangoni and hybrid thermocapillary-rotation-driven flows. Phys. Fluids. 25(1), 012101 (2013)

    MathSciNet  Article  Google Scholar 

  22. Le Bars, M., Cébron, D., Le Gal, P.: Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163–193 (2015)

    MathSciNet  Article  Google Scholar 

  23. Lorenzani, S., Tilgner, A.: Fluid instabilities in precessing spheroidal cavities. J. Fluid Mech. 447, 111–128 (2001)

    Article  Google Scholar 

  24. Makarikhin, I.Y., Smorodin, B.L., Shatrova, E.F.: Drift of spheres in a rotating fluid. Fluid Dyn. 43(4), 506–513 (2008)

    MathSciNet  Article  Google Scholar 

  25. Messio, L., Morize, C., Rabaud, M., Moisy, F.: Experimental observation using particle image velocimetry of inertial waves in a rotating fluid. Exp. Fluids. 44, 519–528 (2008)

    Article  Google Scholar 

  26. Morize, C., Le Bars, M., Le Gal, P., Tilgner, A.: Experimental determination of zonal winds driven by tides. Phys. Rev. Lett. 104, 214501 (2010)

    Article  Google Scholar 

  27. Pimenova, A.V., Goldobin, D.S., Lyubimova, T.P.: Comparison of the effect of horizontal vibrations on interfacial waves in a two-layer system of inviscid liquids to effective gravity inversion. Microgravity Sci. Technol. 30, 1–10 (2018)

    Article  Google Scholar 

  28. Pushkin, D.O., Melnikov, D.E., Shevtsova, V.M.: Ordering of small particles in one-dimensional coherent structures by time-periodic flows. Phys. Rev. Lett. 106, 234501 (2011)

    Article  Google Scholar 

  29. Sauret, A., Le Bars, M., Le Gal, P.: Tide-driven shear instability in planetary liquid cores. Geophys. Res. Lett. 41, 6078–6083 (2014)

    Article  Google Scholar 

  30. Schaeffer, N., Cardin, P.: Quasi-geostrophic model of the instabilities of the Stewartson layer in flat and depth varying containers. Phys. Fluids. 17, 104111 (2005)

    MathSciNet  Article  Google Scholar 

  31. Smorodin, B.L., Ishutov, S.M., Myznikova, B.I.: On the convection of a binary mixture in a horizontal layer under high-frequency vibrations. Microgravity Sci. Technol. 30, 95–102 (2018)

    Article  Google Scholar 

  32. Subbotin, S., Dyakova, V.: Inertial waves and steady flows in a liquid filled librating cylinder. Microgravity Sci. Technol. 30, 383–392 (2018)

    Article  Google Scholar 

  33. Taylor, G.I.: The motion of a sphere in a rotating liquid. Proc. Roy. Soc. London. Ser. A. 102(102), 180–189 (1923)

    MATH  Google Scholar 

  34. Thielicke, W., Stamhuis, E.J.: PIVlab – time-resolved digital particle image velocimetry tool for MATLAB (version: 1.41). J. Open Res. Softw. 2(1), e30 (2014)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Russian Science Foundation (project No. 18-71-10053).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S.V. Subbotin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Subbotin, S., Kozlov, V. Effect of Differential Rotation of Oscillating Inner Core on Steady Flow Instability in a Rotating Sphere. Microgravity Sci. Technol. (2020). https://doi.org/10.1007/s12217-020-09806-y

Download citation

Keywords

  • Oscillations
  • Differential rotation
  • Steady flows
  • Flow instability
  • Waves in a rotating fluid
  • Pattern formation