Skip to main content
Log in

Investigation on Transient Characteristics of Heat Pipe with Re-Entrant Grooved Wick

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

An experiment is conducted to test the transient characteristics of a re-entrant grooved wick heat pipe, and the transient thermal response characteristics of the ammonia-aluminum heat pipe in the horizontal status during startup and shutdown stage is analyzed. The transient axial distributions of the wall temperature of the heat pipe have been obtained. Moreover, the influence of heat load and operating temperature on the transient thermal characteristics have been analyzed. The results show that the axial wall temperature distribution of the heat pipe is quite uniform during startup and shutdown stage and rises more quickly in the early stage of the unsteady state than in the later stage. The effective thermal conductivity becomes lower when the heat input increases and shows a rapidly decreasing trend during the startup process while it remains nearly unchanged during the shutdown process. In the range of heat load and refrigerant temperature given in this experiment, the startup/shutdown response time of the re-entrant grooved wick heat pipe is approximately 3 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anand, A.R.: Analytical and experimental investigations on heat transport capability of axially grooved aluminium-methane heat pipe. Int. J. Therm. Sci. 139, 269–281 (2019)

    Article  Google Scholar 

  • Brandt, C., Stephan, P., Dubois, M., Mullender, B.: Theoretical Investigation of Advanced Capillary Structures in Grooved Heat Pipe Evaporators for Space Applications. SAE Technical Papers, 2000–2001-2319 (2000)

  • Catton, I., Stroes, G.R.: A semi-analytical model to predict the capillary limit of heated inclined triangular capillary grooves. J. Heat Trans. 124(1), 162–168 (2002)

    Article  Google Scholar 

  • Chauris, N., Ayel, V., Bertin, Y., Romestant, C., Eysseric, D.: Hydraulic modelling of a flat heat pipe with two different groove shapes and a small vapour section. Appl. Therm. Eng. 61(2), 311–326 (2013)

    Article  Google Scholar 

  • Chen, Y.P., Gao, W., Zhang, C.B., Zhao, Y.J.: Three-dimensional splitting microfluidics. Lab Chip. 16(8), 1332–1339 (2016)

    Article  Google Scholar 

  • Chen, Y.P., Liu, X.D., Shi, M.H.: Hydrodynamics of double emulsion droplet in shear flow. Appl. Phys. Lett. 102(5), 051609 (2013)

    Article  Google Scholar 

  • Chen, Y.P., Zhang, C., Shi, M., Wu, J., Peterson, G.P.: Study on flow and heat transfer characteristics of heat pipe with axial “ Ω ”-shaped microgrooves. Int. J. Heat Mass Transf. 52(3–4), 636–643 (2009)

    Article  Google Scholar 

  • Chen, Y.P., Zhang, C.B., Shi, M.H., Yang, Y.C.: Thermal and hydrodynamic characteristics of constructal tree-shaped minichannel heat sink. AICHE J. 56(8), 2018–2029 (2010)

    Google Scholar 

  • Deng, D., Chen, R., Yong, T., Lu, L., Tao, Z., Wei, W.: A comparative study of flow boiling performance in reentrant copper microchannels and reentrant porous microchannels with multi-scale rough surface. Int. J. Multiphase Flow. 72, 275–287 (2015)

    Article  Google Scholar 

  • Desai, A.N., Singh, V.K., Patel, R.N.: Effect of Geometrical Parameters on the Thermal Performance of Ammonia Based Trapezoidal Shaped Axial Grooved Heat Pipe. J. Heat Trans., HT-19-1078 (2019)

  • Do, K.H., Kim, S.J., Garimella, S.V.: A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. International Journal of Heat & Mass Transfer. 51(19), 4637–4650 (2008)

    Article  Google Scholar 

  • Dubois, M., Mullender, B., Oost, S.V., Druart, J., Titterton, D.: Space Qualification of High Capacity Grooved Heat Pipes. SAE Technical Papers, 951551 (1995)

  • Edelstein, F., Kosson, R.: A high capacity re-entrant groove heat pipe for cryogenic and room temperature space applications. Cryogenics. 32(2), 167–172 (1992)

    Article  Google Scholar 

  • Ha, J.M., Peterson, G.P.: Capillary performance of evaporating flow in micro grooves: an analytical approach for very small tilt angles. J. Heat Trans. 120(2), 452–457 (1998)

    Article  Google Scholar 

  • Harwell, W., Kaufman, W.B., Tower, L.K.: Re-entrant groove heat pipe. In: AIAA, 12th Thermophysics Conference 1977

  • Hsieh, J.C., Huang, H.J., Shen, S.C., Microrel, J.: Experimental study of microrectangular groove structure covered with multi mesh layers on performance of flat plate heat pipe for LED lighting module. Microelectron. Reliab. 52(6), 1071–1079 (2012)

    Article  Google Scholar 

  • Jiao, A.J., Ma, H.B., Critser, J.K.: Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves. Int. J. Heat Mass Transf. 50(15), 2905–2911 (2007)

    Article  Google Scholar 

  • Khrustalev, D., Faghri, A.: Coupled liquid and vapor flow in miniature passages with micro grooves. J. Heat Trans. 121(3), 729–733 (1999)

    Article  Google Scholar 

  • Kim, S.J., Seo, J.K., Do, K.H.: Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure. Int. J. Heat Mass Transf. 46(11), 2051–2063 (2003)

    Article  Google Scholar 

  • Liu, X., Chen, Y., Shi, M.: Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs). Int. J. Therm. Sci. 65, 224–233 (2013)

    Article  Google Scholar 

  • Mehrali, M., Sadeghinezhad, E., Azizian, R., Akhiani, A.R., Latibari, S.T., Mehrali, M., Metselaar, H.S.C.: Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energ Convers Manage. 118, 459–473 (2016)

    Article  Google Scholar 

  • Oh, H.U., Shin, S., Baek, C.W.: Thermal control of spaceborne image sensor using heat pipe cooling system. Aerosp. Sci. Technol. 29(1), 394–402 (2013)

    Article  Google Scholar 

  • Ponnappan, R.: Novel groove-shaped screen-Wick miniature heat pipe. J Thermophys Heat Tr. 16(1), 17–21 (2002)

    Article  Google Scholar 

  • Romano, L., Ribeiro, G.: Numerical evaluation of a heat pipe-radiator assembly for space power systems. Thermal Science and Engineering Progress. 13, 100368 (2018)

    Article  Google Scholar 

  • Rossomme, S., Goffaux, C., Hillewaert, K., Colinet, P.: Multi-scale numerical modeling of radial heat transfer in grooved heat pipe evaporators. Microgravity Science and Technology. 20(3–4), 293–297 (2008)

    Article  Google Scholar 

  • Suman, B.: A steady state model and maximum heat transport capacity of an electrohydrodynamically augmented micro-grooved heat pipe. Int. J. Heat Mass Transf. 49(21), 3957–3967 (2006)

    Article  Google Scholar 

  • Suman, B.: On the fill charge and the sensitivity analysis of a V-shaped micro heat pipe. AICHE J. 52(9), 3041–3054 (2010)

    Article  Google Scholar 

  • Suman, B., Hoda, N.: On the transient analysis of a V-shaped microgrooved heat pipe. J. Heat Trans. 129(11), 1584–1591 (2007)

    Article  Google Scholar 

  • Tang, J., Yu, Y., Hu, X., Mo, X., Yu, D.: Study on the characteristics of the capillary wetting and flow in open rectangular microgrooves heat sink. Appl Therm Eng 143, S1359431117369958- (2018)

  • Thomas, S.K., Damle, V.C.: Analysis of Fluid Flow in Axial Re-entrant Grooves with Application to Heat Pipes. Aiaa J (2004)

  • Thomas, S.K., Damle, V.C.: Fluid flow in axial reentrant grooves with application to heat pipes. J Thermophys Heat Tr. 19(3), 395–405 (2012)

    Article  Google Scholar 

  • Thomas, S.K., Lykins, R.C., Yerkes, K.L.: Fully developed laminar flow in trapezoidal grooves with shear stress at the liquid–vapor interface. Int. J. Heat Mass Transf. 44(18), 3397–3412 (2001)

    Article  Google Scholar 

  • Wang, J., Gao, W., Zhang, H., Zou, M.H., Chen, Y.P., Zhao, Y.J.: Programmable wettability on photocontrolled graphene film. Sci Adv 4(9), eaat7392 (2018)

  • Xu, X., Zhang, Q., Hao, M., Hu, Y., Lin, Z., Peng, L., Wang, T., Ren, X., Wang, C., Zhao, Z., Wan, C., Fei, H., Wang, L., Zhu, J., Sun, H., Chen, W., Du, T., Deng, B., Cheng, G.J., Shakir, I., Dames, C., Fisher, T.S., Zhang, X., Li, H., Huang, Y., Duan, X.: Double-negative-index ceramic aerogels for thermal superinsulation. Science. 363(6428), 723–727 (2019)

    Article  Google Scholar 

  • Zhang, C.B., Chen, Y.P., Wu, R., Shi, M.H.: Flow boiling in constructal tree-shaped minichannel network. Int. J. Heat Mass Transf. 54(1–3), 202–209 (2011)

    Article  Google Scholar 

  • Zhang, C., Yu, F., Li, X., Chen, Y.: Gravity–capillary evaporation regimes in microgrooves. AICHE J. 65(3), 1119–1125 (2019)

    Article  Google Scholar 

  • Zhang, L.G., Shi, J., Xu, B., Chen, Z.Q.: Influences of pin geometry and inclination angle on condensation heat transfer performance of elliptical pin-fin surface. Microgravity Science and Technology. 30(6), 965–975 (2018). https://doi.org/10.1007/s12217-018-9657-y

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 51906170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yao.

Ethics declarations

Conflict of Interest

We declare that there is no conflict of interest.

Additional information

This article belongs to the Topical Collection: Heat Pipe Systems for Thermal Management in Space

Guest Editors: Raffaele Savino, Sameer Khandekar

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yao, F. Investigation on Transient Characteristics of Heat Pipe with Re-Entrant Grooved Wick. Microgravity Sci. Technol. 32, 521–529 (2020). https://doi.org/10.1007/s12217-020-09796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-020-09796-x

Keywords

Navigation