Skip to main content
Log in

Numerical study on the effect of gravity levels on apparent viscosity of bubbly suspensions

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Based on the Couette parallel plate shear flow model, it was investigated on the effects of the gravity level and the liquid-gas viscosity ratio (λ) on the bubble deformation and the apparent viscosity of the bubbly suspension with the volume of fluid method. The results show that, for a given bubbly suspension, the effect of gravity on the bubble deformation and the relative viscosity is great when the shear action is relatively weak. However, the gravity effect can be neglected when the shear action is relatively strong. Additionally, when the gravity level and the shear action are definite, for the bubbly suspension with a small viscosity ratio (i.e., the influence of gravity is far greater than the viscous force), the relative viscosity is related to gravity because gravity has a great effect on the bubble deformation. In this situation, the bubble is stretched in the direction perpendicular to gravity, leading to the decrease of the obstruction of the bubble to the flow and the increase of the area of the free slip surface. Therefore, the relative viscosity is relatively small. On the contrary, when the viscosity ratio is large (i.e., the influence of the viscous force is much larger than that of gravity), the relative viscosity is less affected by gravity due to the weak effect of gravity on the bubble deformation. The large viscous force decreases the bubble deformation, leading to the increase of the obstruction of the bubble to the flow and the decrease of the area of the free slip surface. Thus the relative viscosity is relatively larger than that when the liquid-gas viscosity ratio is small. When the liquid-gas viscosity ratio is larger than 103, the bubble deformation is dominated by the viscous force, and the effect of gravity on the bubble deformation is negligible. Correspondingly, the effect of gravity on the relative viscosity is also negligible when λ ≥ 103.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • An, Z., Zhang, Y., Li, Q.: Effect of particle shape on the apparent viscosity of liquid-solid suspensions. Powder Technol. 328, 199–206 (2018)

    Article  Google Scholar 

  • Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys.100(2), 335–354 (1992)

  • Banaei, A.A., Loiseau, J., Lashgari, I., Brandt, L.: Numerical simulations of elastic capsules with nucleus in shear flow. Eur. J. Comput. Mech. 26(1–2), 131–153 (2017)

    Article  MathSciNet  Google Scholar 

  • Dang, M., Yue, J., Chen, G.: Numerical simulation of Taylor bubble formation in a microchannel with a converging shape mixing junction. Chem. Eng. J. 262, 616–627 (2015)

    Article  Google Scholar 

  • De Vita, F., Rosti, E.M., Caserta, S., Brandt, L.: On the effect of coalescence on the rheology of emulsions. J. Fluid Mech. 880, 969–991 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Ducloué, L., Pitois, O., Goyon, J., Chateau, X., Ovarlez, G.: Rheological behaviour of suspensions of bubbles in yield stress fluids. J. Non-Newton. J. Non-Newton. Fluid. 215, 31–39 (2015)

    Article  MathSciNet  Google Scholar 

  • Einstein, A.: Eine neue Bestimmung der Moleküldimensionen. J. Ann. Phys. 19, 289–306 (1906)

    Article  MATH  Google Scholar 

  • Einstein, A.: Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen. J. Ann. Phys.34, 591–592 (1911)

  • Frankel, N.A., Acrivos, A.: The constitutive equation for a dilute emulsion. J. Fluid Mech.44, 65–78 (1970)

  • Guido, S.: Shear-induced droplet deformation: effects of confined geometry and viscoelasticity. Curr. Opin. Colloid In. 16(1), 61–70 (2011)

    Article  Google Scholar 

  • Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.39, 201–225 (1981)

  • Joh, W.S., Lee, S.H., Youn, J.R.: Rheological behavior of polydispersed bubble suspensions in shear flows. Polym. Eng. Sci. 50(1), 128–137 (2010)

    Article  Google Scholar 

  • Kékesi, T., Amberg, G., Wittberg, L.P.: Drop deformation and breakup in flows with shear. Chem. Eng. Sci.140, 319–329 (2016)

  • Loewenberg, M., Hinch, E.J.: Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech. 321, 395–419 (1996)

    Article  MATH  Google Scholar 

  • Lim, Y.M., Seo, D., Youn, J.R.: Rheological behavior of dilute bubble suspensions in polyol. Korea-Aust. Rheol. J. 16(1), 47–54 (2004)

    Google Scholar 

  • Liu, J., Zhu, C., Fu, T., Ma, Y.: Numerical simulation of the interactions between three equal-interval parallel bubbles rising in non-Newtonian fluids. Chem. Eng. Sci. 93(4), 55–66 (2013)

    Article  Google Scholar 

  • Lu, M., Pang, M., Chao, J.: Distribution regularity of dynamic viscosity blind region behind the bubble in shear-thinning fluids under different gravity levels. Microgravity Sci. Technol. 31(2), 139–150 (2019)

    Article  Google Scholar 

  • Manga, M., Castro, J., Cashman, K.V., Loewenberg, M.: Rheology of bubble-bearing magmas. J. Volcanol. Geoth. Res. 87(1), 15–28 (1998)

    Article  Google Scholar 

  • Manga, M., Loewenberg, M.: Viscosity of magmas containing highly deformable bubbles. J. Volcanol. Geoth. Res. 105(1), 19–24 (2001)

    Article  Google Scholar 

  • Matsunaga, D., Imai, Y., Yamaguchi, T., Ishikawa, T.: Rheology of a dense suspension of spherical capsules under simple shear flow. J. Fluid Mech.786, 110–127 (2016)

  • Merker, D., Böhm, L., Oßberger, M.: Mass transfer in reactive bubbly flows - a single bubble study. Chem. Eng. Tech.40(8), 1391–1399 (2017)

  • Mitrias, C., Jaensson, N.O., Martien, A.H.: Direct numerical simulation of a bubble suspension in small amplitude oscillatory shear flow. Rheol. Acta. 56(6), 555–565 (2017)

    Article  Google Scholar 

  • Murai, Y., Oiwa, H.: Increase of effective viscosity in bubbly liquids from transient bubble deformation. Fluid Dyn. Res. 40(7–8), 565–575 (2008)

    Article  MATH  Google Scholar 

  • Oldroyd, J.G.: The elastic and viscous properties of emulsions and suspensions. Proc. Math. Phys. Eng. Sci. 218, 122–132 (1953)

    MATH  Google Scholar 

  • Oliveira, T.F., Cunha, F.R.: Emulsion rheology for steady and oscillatory shear flows at moderate and high viscosity ratio. Rheol. Acta. 54(11–12), 951–971 (2015)

    Article  Google Scholar 

  • Pal, R.: Rheological behavior of bubble-bearing magmas. Earth Planet. Sc. Lett. 207(1), 165–179 (2003)

    Article  Google Scholar 

  • Pal, R.: Rheological constitutive equation for bubbly suspensions. Ind. Eng. Chem. Res.43(17), 5372–5379 (2004)

  • Pal, R.: Fundamental rheology of disperse systems based on single-particle mechanics. Fluids. 1(4), 40 (2016)

    Article  Google Scholar 

  • Pang, M., Xu, L.: Numerical study on the influence of dispersed bubbles on liquid phase apparent viscosity in two-dimensional parallel plate. Can. J. Chem. Eng. 95(6), 1192–1201 (2016)

    Article  Google Scholar 

  • Pistone, M., Cordonnier, B., Ulmer, P., Caricchi, L.: Rheological flow laws for multiphase magmas: an empirical approach. J. Volcanol. Geoth. Res. 321, 158–170 (2016)

    Article  Google Scholar 

  • Pu, L., Li, H., Lv, X., Zhao, J., Chen, T., Zhu, Y.: Numerical simulation of bubble dynamics in microgravity. Microgravity Sci. Technol. 20(3–4), 247–251 (2008)

    Article  Google Scholar 

  • Rosti, E.M., Brandt, L.: Suspensions of deformable particles in a Couette flow. J. Non-Newton. Fluid. 262, 3–11 (2018)

    Article  MathSciNet  Google Scholar 

  • Rosti, E.M., Brandt, L., Mitra, D.: Rheology of suspensions of viscoelastic spheres: deformability as an effective volume fraction. Phys. Rev. Fluids. 3, 012301 (2018)

    Article  Google Scholar 

  • Rosti, E.M., De Vita, F., Brandt, L.: Numerical simulations of emulsions in shear flows. Acta Mech. 230(2), 667–682 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Rust, A.C., Manga, M.: Effects of bubble deformation on the viscosity of dilute suspensions. J. Non-Newton. Fluid. 104(1), 53–63 (2002)

    Article  MATH  Google Scholar 

  • Srivastava, P., Malipeddi, A.R., Sarkar, K.: Steady shear rheology of a viscous emulsion in the presence of finite inertia at moderate volume fractions: sign reversal of normal stress differences. J. Fluid Mech. 805, 494–522 (2016)

    Article  MathSciNet  Google Scholar 

  • Stein, D.J., Spera, F.J.: Rheology and microstructure of magmatic emulsions: theory and experiments. J. Volcanol. Geoth. Res.49(1–2), 157–174 (1992)

  • Suñol, F., González-Cinca, R.: Effects of gravity level on bubble detachment, rise, and bouncing with a free surface. Int. J. Multiphas. Flow. 113, 191–198 (2019)

    Article  MathSciNet  Google Scholar 

  • Tasaka, Y., Kimura, T., Murau, Y.: Estimating the effective viscosity of bubble suspensions in oscillatory shear flows by means of ultrasonic spinning rheometry. Exp. Fluids. 56, 1867 (2015)

    Article  Google Scholar 

  • Taylor, G.I.: The viscosity of a fluid containing small drops of another fluid. Proc. Math. Phys. Eng. Sci. 138, 41–48 (1932)

    MATH  Google Scholar 

  • Thien, T., Nhan, P., Boo, C.K.: Rheology of bubble suspensions using dissipative particle dynamics. part I: A hard-core DPD particle model for gas bubbles. J. Rheol. 57(6), 1715 (2013)

    Article  Google Scholar 

  • Torres, M.D., Hallmark, B., Wilson, D.I.: Determination of the shear and extensional rheology of bubbly liquids with a shear-thinning continuous phase. Rheol. Acta. 54(6), 461–478 (2015)

    Article  Google Scholar 

  • Truby, J.M., Mueller, S.P., Llewellin, E.W., Mader, H.M.: The rheology of three-phase suspensions at low bubble capillary number. Proc. Math. Phys. Eng. Sci. 471, 20140557 (2015)

    Article  Google Scholar 

  • Wang, T., Li, H.X., Zhao, J.F.: Three-dimensional numerical simulation of bubble dynamics in microgravity under the influence of nonuniform electric fields. Microgravity Sci. Technol. 28, 133–142 (2016)

    Article  Google Scholar 

  • Wu, Z., Sundén, B.: Heat transfer correlations for elongated bubbly flow in flow boiling micro/minichannels. Heat Tran. Eng. 37(11), 985–993 (2016)

    Article  Google Scholar 

  • Xu, A., Shi, L., Zhao, T.S.: Lattice boltzmann simulation of shear viscosity of suspensions containing porous particles. Int. J. Heat Mass Tran. 116, 969–976 (2018)

    Article  Google Scholar 

  • Young, D.: Time-dependent multi-material flow with large fluid distortion. Num. Method Fluid Dyn. 24, 273–285 (1982)

    Google Scholar 

  • Zhao, J., Zhang, L., Li, Z., Qin, W.: Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity. Int. J. Heat Mass Tran. 54(21–22), 4655–4663 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the NSFC Fund (No. 51376026) and Jiangsu Province “Qinglan” Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Pang.

Additional information

This article belongs to the Topical Collection: Multiphase Fluid Dynamics in Microgravity

Guest Editors: Tatyana P. Lyubimova, Jian-Fu Zhao

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, R., Pang, M. Numerical study on the effect of gravity levels on apparent viscosity of bubbly suspensions. Microgravity Sci. Technol. 32, 555–577 (2020). https://doi.org/10.1007/s12217-020-09792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-020-09792-1

Keywords

Navigation