Skip to main content
Log in

Heat Transfer in the Samples Solidified in Drop Tubes

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Drop tubes are one of the most suitable and low cost options to provide a microgravity environment. The study of heat transfer during the free fall of alloy droplets is important to optimize the materials solidification conditions in drop tubes. In this paper the influence of the temperature gradient inside a drop tube using models of heat transfer by convection alone and by convection plus radiation was investigated and applied to the solidification of BiSn eutectic alloys in a 3.5 m length drop tube installed at Associate Laboratory of Sensors and Materials located at Brazilian Space Research Institute (LABAS/INPE). The study showed that the heat transfer model by convection plus radiation obtained better results when compared with experimental data. Besides, the model findings help to predict if the droplet will fully solidify before reaching the end of the drop tube. This is a very important data for short length drop tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport phenomena, 2nd edn. Wiley, New York (2006)

    Google Scholar 

  • Cao, L., Cochrane, R.F., Mullis, A.M.: Solidification morphology and phase selection in drop-tube processed Ni–Fe–Si intermetallics. Intermetallics 60, 33–44 (2015). https://doi.org/10.1016/j.intermet.2015.01.006

    Article  Google Scholar 

  • Çengel, Y. A., Ghajar, A.: Heat and mass transfer: fundamentals and applications, 4th edn. McGraw-Hill Science, New York (2010)

  • Forgac, J.M., Angus, J.C.: Solidification of metal spheres. Metall. Trans. B 12(B), 413–416 (1981)

    Article  Google Scholar 

  • Forgac, J.M., Schur, T.P., Angus, J.C.: Solidification of a sphere: the effects of thermal contraction and density change upon freezing. ASME J. Appl. Mech. 46(1), 83–89 (1979). https://doi.org/10.1115/1.3424533

    Article  Google Scholar 

  • Freitas, F.E.: Metallic eutectic alloy solidification of BiCd and BiSn in microgravity environment using drop tube. Dissertation (Master Dissertation). INPE Brazil (2009)

  • Fumachi, E.F.: Drop tube development to modelling and optimization of tin-bismuth eutectic alloy solidification process in microgravity environment. Thesis (PhD Thesis). INPE Brazil (2017)

  • Ge, L.L., Liu, R.P., Li, G., Ma, M.Z., Wang, W.K.: Solidication of Al - 50 at. % Si alloy in a drop tube. Mater. Sci. Eng. A 385, 128–132 (2004)

    Article  Google Scholar 

  • Greer, A.L.: Nucleation and solidification studies using drop-tubes. Mater. Sci. Eng. A 178, 113–120 (1994)

    Article  Google Scholar 

  • Grugel, R.N., Brush, L.N.: Solidification dynamics of spherical drops in a free fall environment. Microgravity Sci. Technol. 19(2), 32–44 (2007). https://doi.org/10.1007/BF02911865

    Article  Google Scholar 

  • Han, X.J., Wang, N., Wei, B.: Rapid eutectic growth under conteinerless condition. Appl. Phys. Lett. 81, 778–780 (2002). https://doi.org/10.1063/1.1492855

    Article  Google Scholar 

  • Hofmeister, W.H., Robinson, M.B., Bayuzick, R.J.: Undercooling of pure metals in a containerless, microgravity environment. Appl. Phys. Lett. 49, 1342–1344 (1986)

    Article  Google Scholar 

  • Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S.: Fundamentals of heat and mass transfer, 6th edn. Wiley, New York (2006)

  • Levitas, V.I., Henson, B.F., Smilowitz, L.B., Asay, B.W.: Solid-solid phase transformation via virtual melting significantly below the melting temperature. Phys. Rev. Lett. 92(23), 235702 (2004). https://doi.org/10.1103/PhysRevLett.92.235702

    Article  Google Scholar 

  • Li, S., Wu, P., Fukuda, H., Ando, T.: Simulation of the solidification of gas-atomized Sn-5mass%Pb droplets. Mater. Sci. Eng. A 499(1-2), 396–403 (2009). https://doi.org/10.1016/j.msea.2008.08.041

    Article  Google Scholar 

  • Li, M., Wang, H., Yan, N., Wei, B.: Heat transfer of micro-droplet during free fall in drop tube. Sci. China Technol. Sci. 61(7), 1021–1030 (2018). https://doi.org/10.1007/s11431-018-9240-x

    Article  Google Scholar 

  • McCoy, J.K., Markworth, A.J., Brodkey, R.S., Collings, E.W.: Materials processing in the reduced gravity environment of space, edited by R. H. Doremus and P. C. Nordine. Mat. Res. Soc. Sym. Proc., 87 163 (1987)

  • McCoy, J.K., Markworth, A.J., Collings, E.W., Brodkey, R.S.: Cooling and solidification of liquid-metal drops in a gaseous atmosphere. J. Mat. Sci. 27, 761–766 (1992)

    Article  Google Scholar 

  • Morrison, F.A.: Data correlation for drag coefficient for sphere. Michigan Technological University, Houghton (2010). http://www.chem.mtu.edu/fmorriso/DataCorrelationForSphereDrag2013.pdf. Accessed 20 October 2012

    Google Scholar 

  • Perepezko, J.H.: Nucleation in undercooled liquids. Mater. Sci. Eng. 65(1), 125–135 (1984). https://doi.org/10.1007/s12217-014-9384-y

    Article  Google Scholar 

  • Poli, A.K.S., Toledo, R.C., An, C.Y., Bandeira, I.N.: Estudo da solidificação da liga eutética de BiSn em ambiente de microgravidade. In: Workshop em engenharia e tecnologia espaciais. 2. (WETE). Anais... São José dos Campos: INPE (2014) http://sid.inpe.br/mtc-m21b/2014/11.19.19.30. Accessed in March 06 (2018)

  • Sahn, P.R.: Workshop proc. on nucleation-rapid solidification. Foundry Institute, Aachen Institute of Technology, Aachen, 5–8 (1983)

  • Szekely, J., Fischer, R.J.: On the solidification of metal spheres due to thermal radiation at the bounding surface. Metall. Materi. Trans. 1(5), 1480–1482 (1970). https://doi.org/10.1007/BF02900288

    Article  Google Scholar 

  • Toledo, R.C.: Study of solidification of BiInSn eutectic metal alloy at the microgravity environment using a drop tube. (Master’s Thesis), INPE Brazil (2009)

  • Toledo, R.C.: Microgravidade, Estudo da Solidificação de Ligas Metálicas Eutéticas em Ambiente de, Thesis (PhD Thesis) INPE (2013)

  • Toledo, R.C., Mattos, M.B., An, C.Y., Bandeira, I.N.: Solidification of eutectic B i 32.5 I n 51 S n 16.5 alloy under microgravity using a drop tube. Mater. Sci. Forum 660-661, 587–592 (2010). https://doi.org/10.4028/www.scientific.net/MSF.660-661.587

    Article  Google Scholar 

  • Toledo, R.C., de Freitas, F.E., An, C.Y., Bandeira, I.N.: Containerless Solidification of Eutectic PbSn Alloy Droplets in a Drop Tube. Mater. Sci. Forum 727-728, 1633–1637 (2012). https://doi.org/10.4028/www.scientific.net/MSF.727-728.1633

    Article  Google Scholar 

  • Toledo, R.C., Travelho, J.S., An, C.Y., Bandeira, I.N.: Heat transfer during the solidification of eutectic PbSn alloy droplets in drop tube. Microgravity Sci. Technol. 26(2), 119–124 (2014). https://doi.org/10.1007/s12217-014-9384-y

    Article  Google Scholar 

  • Turnbull, D., Cech, R.E.: Microscopic observation of the solidication of small metal droplets. J. Appl. Phys. 21, 804–810 (1950)

    Article  Google Scholar 

  • Walter, H.U.: Fluid sciences and materials science in space: an European Perspective. Springer, Berlin (1987)

    Book  Google Scholar 

  • Yang, F., Chen, Z., Cao, F., Fan, R., Kang, H., Huang, W., Yuan, Q., Xiao, T., Fu, Y., Wang, T.: Grain nucleation and growth behavior of a Sn-Pb alloy affected by direct current: an in situ investigation. J. Mater. Sci. Technol. 33(10), 1134–1140 (2017). https://doi.org/10.1016/j.jmst.2017.05.011

    Article  Google Scholar 

Download references

Acknowledgments

The author Toledo is grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarship of the Brazilian Postdoctoral Program (PNPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael C. Toledo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fumachi, E.F., Toledo, R.C., Tenório, P.I.G. et al. Heat Transfer in the Samples Solidified in Drop Tubes. Microgravity Sci. Technol. 31, 185–194 (2019). https://doi.org/10.1007/s12217-019-9677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-9677-2

Keywords

Navigation