Evaluation of Free-Floating Droplet Acceleration in ISS Droplet Combustion Experiments

Abstract

Trajectories of free-floating droplets burned in experiments on the International Space Station (ISS) are evaluated from digital images. n-Heptane droplets are observed to move in irregular paths after cool flame extinction with acceleration levels of tens or hundreds of μg and frequencies of 0.2 - 0.3 Hz. Flame oscillations for burning methanol and n-heptane droplets can affect droplet acceleration components. During flame oscillation, droplets exhibit oscillatory acceleration patterns with characteristic frequencies of 0.2 - 0.3 Hz and accelerations of the order of 50 μg. The droplet acceleration magnitudes are significantly larger than measured ISS acceleration levels (g-jitter). It is concluded that motions of free droplets are initially a result of the deployment and ignition processes, while motions later in droplet lifetimes are a result of interactions between the droplets and the gas phase including influences of thermal and solutal Marangoni stresses at the liquid-gas interface.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Aharon, I., Shaw, B.: Marangoni instability of bi-component droplet gasification. Phys. Fluids 8(7), 1820–1827 (1996). https://doi.org/10.1063/1.868964

    Article  Google Scholar 

  2. Aharon, I., Tam, V.K., Shaw, B.: Combustion of submillimeter heptane/methanol and heptane/ethanol droplets in reduced gravity. Journal of Combustion 2013, 6 (2013)

    Article  Google Scholar 

  3. Cabrera, J.L.O.: locpol: Kernel local polynomial regression. https://CRAN.R-project.org/package=locpol, r package version 0.6-0 (2012)

  4. DeLombard, R., Kelly, E., Hrovat, K., Nelson, E., Pettit, D.: Motion of air bubbles in water subjected to microgravity accelerations. Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2005-722 (2005)

  5. Dietrich, D.: Personal communication (2013)

  6. Dietrich, D., Ferkul, P., Bryg, V., Nayagam, V., Hicks, M., Williams, F., Dryer, F., Shaw, B., Choi, M., Avedisian, C.: Detailed results from the flame extinguish-ment experiment (flex)-march 2009 to december 2010. Tech. Rep. Report No. NASA/TP-2013-216046, NASA, Gleen Research Center, Cleveland OH 44135, USA (2013)

  7. Dietrich, D., Nayagam, V., Hicks, M., Ferkul, P., Dryer, F., Farouk, T., Shaw, B., Suh, H., Choi, M., Liu, Y., Avedisian, C., Williams, F.: Droplet combustion experiments aboard the international space station. Microgravity Sci. Technol. 26(2), 65–76 (2014). https://doi.org/10.1007/s12217-014-9372-2

    Article  Google Scholar 

  8. Fan, J., Gijbels, I.: Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaptation. Journal of the Royal Statistical Society Series B (Methodological) 57(2), 371–394 (1995)

    MathSciNet  Article  Google Scholar 

  9. Golovin, A., Rayazantsev, Y.: Drive of a reacting droplet due to chemoconcentrational capillary effect. Fluid Dynamics 25, translated from Russian by Consultants Bureau, New York (1990)

  10. Ha, V., Lai, C.: The onset of stationary marangoni instability of an evaporating droplet. Proceedings of the Royal Society of London A: Mathematical. Phys. Eng. Sci. 457(2008), 885–909 (2001). https://doi.org/10.1098/rspa.2000.0697

    Article  MATH  Google Scholar 

  11. Higuera, F., Linan, A.: Stability of a droplet vaporizing in a hot atmosphere. Prog Astronaut Aeronaut 105, 217 (1985)

  12. Jules, K., Hrovat, K., Kelly, E., McPherson, K., Reckart, T., Grodsinksy, C.: International space station increment-3 microgravity environment summary report. Tech. Rep. NASA/TM-2002-211693, NASA Glenn Research Center (2002)

  13. Kim, M., Yoon, D., Cho, E.: Onset of marangoni convection in an initially quiescent spherical droplet subjected to the transient heat conduction. Korean Journal of Chemical Engineering 26(6), 1461–1466 (2009). https://doi.org/10.1007/s11814-009-0284-6

    Article  Google Scholar 

  14. Lozinski, D., Matalon, M.: Thermocapillary motion in a spinning vaporizing droplet. Physics of Fluids A: Fluid Dynamics 5(7), 1596–1601 (1993). https://doi.org/10.1063/1.858836

    Article  MATH  Google Scholar 

  15. MATLAB: version 9.3.0.713579 (R2017b). Natick, Massachusetts (2017)

  16. Nayagam, V., Dietrich, D., Ferkul, P., Hicks, M., Williams, F.: Can cool flames support quasi-steady alkane droplet burning? Combustion and Flame 159(12), 3583–3588 (2012). https://doi.org/10.1016/j.combustflame.2012.07.012

    Article  Google Scholar 

  17. Niazmand, H., Shaw, B.D., Dwyer, H.A., Aharon, I.: Effects of marangoni convection on transient droplet evaporation. Combust. Sci. Technol. 103(1-6), 219–233 (1994). https://doi.org/10.1080/00102209408907696

    Article  Google Scholar 

  18. Oppenheim, A.V.: Discrete-time signal processing, 3rd edn. Prentice-Hall signal processing series, Pearson, Upper Saddle River (2010)

    Google Scholar 

  19. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  20. Ryazantsev, Y., Rednokov, A.: Capillary effects associated with the motion of a droplet in a homogeneous medium. In: Hans, R (ed.) Microgravity fluid mechanics: IUTAM symposium Bremen, pp 427–434. Springer, Berlin (1991)

  21. Shaw, B., Vang, C: Oxygen lewis number effects on reduced gravity combustion of methanol and n-heptane droplets. Combust. Sci. Technol. 188(1), 1–20 (2016). https://doi.org/10.1080/00102202.2015.1072176

    Article  Google Scholar 

  22. Shaw, B., Dryer, F., Williams, F., Gat, N.: Interactions between gaseous electrical discharges and single liquid droplets. Combustion and Flame 74, 233–254 (1988). https://doi.org/10.1016/0010-2180(88)90071-5

    Article  Google Scholar 

  23. Shaw, B., Aharon, I., Lenhart, D., Dietrich, D., Williams, F.: Spacelab and drop-tower experiments on combustion of methanol/dodecanol and ethanol/dodecanol mixture droplets in reduced gravity. Combust. Sci. Technol. 167(1), 29–56 (2001a). https://doi.org/10.1080/00102200108952176

    Article  Google Scholar 

  24. Shaw, B., Clark, B., Wang, D.: Spacelab experiments on combustion of heptane/hexadecane droplets. AIAA J. 39(12), 2327–2335 (2001b). https://doi.org/10.2514/2.1238

    Article  Google Scholar 

  25. Subramanian, R.: Thermocapillary motion of bubbles and drops. In: Hans, R (ed.) Microgravity fluid mechanics: IUTAM symposium Bremen, vol. 1991, pp 393–403. Springer (1991)

  26. Subramanian, R., Balasubramaniam, R.: The motion of bubbles and drops in reduced gravity. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  27. Sueur, J., Aubin, T., Simonis, C.: Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics 18, 213–226 (2008). https://doi.org/10.1080/09524622.2008.9753600

    Article  Google Scholar 

  28. Takahashi, F., Katta, V.R., Hicks, M.C.: Cool-flame burning and oscillations of envelope diffusion flames in microgravity. Microgravity Sci. Technol. 30(4), 339–351 (2018). https://doi.org/10.1007/s12217-018-9630-9

    Article  Google Scholar 

  29. Team, RC: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2013)

  30. Treuner, M., Delgado, A., Rath, H., Duda, U., Szymczyk, J., Siekmann, J.: Experimental investigation of the management of large-sized drops and the onset of marangoni-convection. In: Hans, R (ed.) Microgravity fluid mechanics: IUTAM symposium Bremen, pp 227–234. Springer, Berlin (1991)

  31. Vang, C.L., Shaw, B.D.: Estimates of liquid species diffusivities in n-propanol/glycerol mixture droplets burning in reduced gravity. Microgravity Sci. Technol. 27(4), 281–295 (2015). https://doi.org/10.1007/s12217-015-9455-8

    Article  Google Scholar 

  32. Young, N., Goldstein, J., Block, M.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350–356 (1959)

    Article  Google Scholar 

  33. Zhang, B., Williams, F.: Alcohol droplet combustion. Acta Astronaut. 39(8), 599–603 (1996). https://doi.org/10.1016/S0094-5765(97)00009-X

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benjamin D. Shaw.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The financial support of the National Aeronautics and Space Administration via grant NNX14AK01G is gratefully acknowledged.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vang, C.L., Shaw, B.D. Evaluation of Free-Floating Droplet Acceleration in ISS Droplet Combustion Experiments. Microgravity Sci. Technol. 32, 531–543 (2020). https://doi.org/10.1007/s12217-019-09752-4

Download citation

Keywords

  • Droplet combustion
  • Droplet migration
  • Marangoni flows
  • g-jitter