Skip to main content
Log in

Experimental Investigation of Capillary-Driven Two-Phase Flow in Water/Butanol under Reduced Gravity Conditions

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The capillary flow of water/butanol mixture is investigated in a single groove heat pipe model on board the Airbus A310 ‘Zero-G’ of the European Space Agency. As working fluid for evaporation-based heat transfer devices like conventional or pulsating heat pipes, these kinds of mixtures give more stable behaviour and higher dry-out limit with respect to pure water because of an anomalous behaviour of the surface tension with temperature. The groove is embedded in a semi-transparent test cell that allows for the qualitative visualization of the liquid distribution along the channel and is heated and cooled at two opposite sides with an electrical resistance and a water circulation system. The evaporation/condensation process is regulated changing the power input in a range between 5 and 30 W and the liquid distribution is detected from a top window using a CCD camera and a LED illumination device. The results show that the liquid distribution is affected by the gravity level and this effect is normally masked on ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe, Y.: About self-rewetting fluids - possibility as a new working fluid. Therm. Sci. Eng. 12(3), 9–18 (2004)

  • Cecere, A., Di Paola, R., Savino, R., Abe, Y., Carotenuto, L., Van Vaerenbergh, S.: Observation of Marangoni flow in ordinary and self-rewetting fluids using optical diagnostic systems. Eur. Phys. J. Spec. Top. 192, 109–120 (2011)

  • Cecere, A., De Cristofaro, D., Savino, R., Ayel, V., Sole-Agostinelli, T., Marengo, M., Romestant, C., Bertin, Y.: Experimental analysis of a flat plate pulsating heat pipe with self-ReWetting fluids during a parabolic flight campaign. Acta Astronaut. 147, 454–461 (2018a)

    Article  Google Scholar 

  • Cecere, A., De Cristofaro, D., Savino, R., Boveri, G., Raimondo, M., Veronesi, F., Oukara, F., Rioboo, R.: Visualization of liquid distribution and dry-out in a single-channel heat pipes with different wettability. Exp. Thermal Fluid Sci. 96, 234–242 (2018b)

    Article  Google Scholar 

  • Chen, P., Harmand, S., Ouenzerfi, S., Schiffler, J.: Marangoni flow induced evaporation enhancement on binary sessile drops. J. Phys. Chem. B. 121(23), 5824–5834 (2017)

    Article  Google Scholar 

  • Dushin, V.R., Nikitin, V.F., Smirnov, N.N., Skryleva, E.I., Tyurenkova, V.V.: Microgravity investigation of capillary driven imbibition. Microgravity Sci. Technol. 30, 393–398 (2018)

    Article  Google Scholar 

  • Fei, L., Ikebukuro, K., Katsuta, T., Katsuta, T., Kaneko, T., Ueno, I., Pettit, D.R.: Effect of static deformation on basic flow patterns in Thermocapillary-driven free liquid film. Microgravity Sci. Technol. 29, 29 (2017)

    Article  Google Scholar 

  • Furrer, M., Saraceno, L., Mariani, A., Celata, G.P.: Capillary pressure influence on open channels pressure drop. Int. J. Therm. Sci. 70, 102–113 (2013)

    Article  Google Scholar 

  • Hu, Y., Huang, K., Huang, J.: A review of boiling heat transfer and heat pipes behaviour with self-rewetting fluids. Int. J. Heat Mass Transf. 121, 107–118 (2018)

    Article  Google Scholar 

  • Legros, J.C., et al.: Problems related to non-linear variations of surface tension. Acta Astronaut. 13(12), 697–703 (1986)

    Article  Google Scholar 

  • Limbourg-Fontaine, M.C., et al.: Marangoni convection when the surface tension increases with the temperature in normal and low gravity conditions. Adv. Space Res. 8(12), 195–203 (1988)

    Article  Google Scholar 

  • Mamalis, D., Koutsos, V., Sefiane, K.: On the motion of a sessile drop on an incline: effect of non-monotonic Thermocapillary stresses. Appl. Phys. Lett. 109, 231601 (2016)

    Article  Google Scholar 

  • Mamalis, D., Koutsos, V., Sefiane, K.: Bubble rise in a non-isothermal self-rewetting fluid and the role of Thermocapillarity. Int. J. Therm. Sci. 117, 146–162 (2017)

    Article  Google Scholar 

  • Mamalis, D., Koutsos, V., Sefiane, K.: Non-isothermal spreading dynamics of self-rewetting droplets. Langmuir. 34, 1916–1931 (2018)

    Article  Google Scholar 

  • Nishiguchi, S., Shoji, M.: Critical heat flux of butanol aqueous solution. Therm. Sci. Eng. 20(1), 1–5 (2012)

    Google Scholar 

  • Ouenzerfi, S., Harmand, S.: Experimental droplet study of inverted Marangoni effect of a binary liquid mixture on a nonuniform heated substrate. Langmuir. 32(10), 2378–2388 (2016)

    Article  Google Scholar 

  • Ouenzerfi, S., Harmand, S., Schiffler, J.: Leidenfrost self-rewetting drops. J. Phys. Chem. B. 122(18), 4922–4930 (2018)

    Article  Google Scholar 

  • Savino, R., Monti, R.: Heat pipes for space applications. Space Technology. 25(1), (2005)

  • Savino, R., Abe, Y., Fortezza, R.: Comparative study of heat pipes with different working fluids under normal gravity and microgravity conditions. Acta Astronaut. 63, 24–34 (2008)

    Article  Google Scholar 

  • Savino, R., Cecere, A., Di Paola, R.: Surface tension-driven flow in wickless heat pipes with self-rewetting fluids. Int. J. Heat Fluid Flow. 30(2), 380–388 (2009a)

    Article  Google Scholar 

  • Savino, R., Cecere, A., Di Paola, R., Abe, Y., Castagnolo, D., Fortezza, R.: Marangoni heat pipe: an experimenton board MIOsat Italian microsatellite. Acta Astronaut. 65, 1582–1592 (2009b)

    Article  Google Scholar 

  • Savino, R., Di Paola, R., Cecere, A. and Fortezza, R., Self-rewetting heat transfer fluids and nano-brines for space heat pipes. Acta Astronaut., vol. 67, 9/10, 1030–1037, (2011)

  • Savino, R., Cecere, A., Van Vaerenbergh, S., Abe, Y., Pizzirusso, G., Tsevecos, W., Mojahed, M., Galand, Q.: Some experimental progresses in the study of self-rewetting fluids for the SELENE experiment to be carried in the thermal platform 1 hardware. Acta Astronaut. 89, 179–188 (2013)

    Article  Google Scholar 

  • Savino, R., De Cristofaro, D., Cecere, A.: Flow visualization and analysis of self-rewetting fluids in a model heat pipe. Int. J. Heat Mass Transf. 115, 581–591 (2017)

    Article  Google Scholar 

  • Sitar, A., Golobic, I.: Heat transfer enhancement of self-rewetting aqueous n-butanol solutions boiling in microchannels. Int. J. Heat Mass Transf. 81, 198–206 (2015)

    Article  Google Scholar 

  • Su, X., Zhang, M., Han, W., Guo, X.: Experimental study on the heat transfer performance of an oscillating heat pipe with self-rewetting nanofluid. Int. J. Heat Mass Transf. 100, 378–385 (2016)

    Article  Google Scholar 

  • Tsang, S., Wu, Z.H., Lin, C.H., Sun, C.: On the evaporative spray cooling with a self-rewetting fluid: chasing the heat. Appl. Therm. Eng. 132, 196–208 (2018)

    Article  Google Scholar 

  • Wang, Z.R., Zhang, X.B., Wen, S.Z., Huang, Z.C., Mo, D.C., Qi, X.M., He, Z.H.: Experimental investigation of the effect of gravity on heat transfer and instability in parallel mini-channel heat exchanger. Microgravity, Sci. Technol. 30, 831–838 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the European Space Agency through the MAP (Microgravity Application Promotion) project: “Innovative Wickless Heat Pipe Systems for Ground and Space Applications (INWIP)”. ESTEC Contract number: 4000115115/15/NL/PG. Special thanks must be given to NOVESPACE team in Bordeaux for their assistance and to Dr. B. Toth (ESA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anselmo Cecere.

Additional information

Guest Editors: Raffaele Savino, Sameer Khandekar

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Heat Pipe Systems for Thermal Management in Space

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecere, A., Di Martino, G.D. & Mungiguerra, S. Experimental Investigation of Capillary-Driven Two-Phase Flow in Water/Butanol under Reduced Gravity Conditions. Microgravity Sci. Technol. 31, 425–434 (2019). https://doi.org/10.1007/s12217-019-09723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09723-9

Keywords

Navigation