Skip to main content
Log in

Droplet Movement on a Composite Wedge-Shaped Surface with Multi-Gradients and Different Gravitational Field by Molecular Dynamics

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

To find out the mechanism of droplet movement on the composite wedge-shaped surface with multi wettability gradients and simulated gravitational field in a micro view, the model of droplet movement was built and studied by molecular dynamics. It was found that the droplet would move faster and farther with greater vertex angle on hydrophobic surface than on hydrophilic surface until the whole droplet reached the strong wettability surface. Applied force was used to simulate gravitational field. An inflection point was appeared in the average velocity curve. The average velocity increased first and then decreased with greater applied force. The simulation results of relationship between average velocity and applied force corresponded well with nonlinear fitting curve, indicating the reasonable and reliable of simulation results. With the increase of applied force, the droplet became more flat. However, the effect of wettability gradient to shrink the spread area played a major role in the early to make the droplet narrower and then the combined effect of wettability gradient to enlarge the spread area and applied force had a major impact in the later to make the droplet spread more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexiadis, A., Kassinos, S.: Molecular simulation of water in carbon nanotubes. Chem. Rev. 108, 5014 (2008)

    Article  Google Scholar 

  • Bai, H., Tian, X.L., Zheng, Y.M., Ju, J., Zhao, Y., Jiang, L.: Direction controlled driving of tiny water drops on bioinspired artificial spider silks. Adv. Mater. 22, 5521–5525 (2010)

    Article  Google Scholar 

  • Cieplak, M., Koplik, J., Banavar, J.R.: Nanoscale fluid flows in the vicinity of patterned surfaces. Phys. Rev. Lett. 96, 114502 (2006)

    Article  Google Scholar 

  • Chaudhury, M.K., Whitesides, G.M.: How to make water run uphill. Science 256, 1539–1541 (1992)

    Article  Google Scholar 

  • Chen, Y., Wang, L., Xue, Y., Jiang, L., Zheng, Y.: Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance. Sci. Rep., 3 (2013)

  • Chen, X., Ding, Z.J., Liu, R.: Spreading of annular droplets on a horizontal fiber. Microgravity Sci. Technol. 30, 143–153 (2018)

    Article  Google Scholar 

  • Chou, I.H., Benford, M., Beier, H.T., Cote, G.L.: Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. Nano Lett. 8, 1729–1735 (2008)

    Article  Google Scholar 

  • Daniel, S., Chaudhury, M.K., Chen, J.C.: Past drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001)

    Article  Google Scholar 

  • Daniel, S., Chaudhury, M.K., De Gennes, P.G.: Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 21, 4240–4248 (2005)

    Article  Google Scholar 

  • De Coninck, J., Blake, T.D.: Wetting and molecular dynamics simulations of simple liquids. Annu. Rev. Mater. Res. 38, 1 (2008)

    Article  Google Scholar 

  • Deng, S., Shang, W., Feng, S., Zhu, S., Xing, Y., Li, D., Hou, Y., Zheng, Y.: Controlled droplet transport to target on a high adhesion surface with multi-gradients. Sci. Rep., 7 (2017a)

  • Deng, S.Y., Shang, W.F., Feng, S.L., Zhu, S.P., Xing, Y., Li, D., Hou, Y.P., Zheng, Y.M.: Controlled droplet transport to target on a high adhesion surface with multi-gradients. Sci. Rep-UK, 45687 (2017b)

  • Furuta, T., Sakai, M., Isobe, T., Matsushita, S., Nakajima, A.: Sliding of water droplets on hydrophobic surfaces with various hydrophilic region sizes. Langmuir 27, 7307–7313 (2011)

    Article  Google Scholar 

  • Greenspan, H.P.: Motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84, 125–143 (1978)

    Article  MATH  Google Scholar 

  • Guo, L., Tang, G.H.: Experimental study on directional motion of a single droplet on cactus spines. Int. J. Heat Mass Trans. 84, 198–202 (2015)

    Article  Google Scholar 

  • Ghosh, A., Ganguly, R., Schutzius, T.M., Megaridis, C.M.: Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms. Lab Chip 14, 1538–1550 (2014)

    Article  Google Scholar 

  • Grunze, M.: Surface science - driven liquids. Science 283, 41–42 (1999)

    Article  Google Scholar 

  • Halverson, J.D., Maldarelli, C., Couzis, A., Koplik, J.: A molecular dynamics study of the motion of a nanodroplet of pure liquid on a wetting gradient. J. Chem. Phys. 129, 164708 (2008)

    Article  Google Scholar 

  • Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  Google Scholar 

  • Ito, Y., Heydari, M., Hashimoto, A., Konno, T., Hirasawa, A., Hori, S., Kurita, K., Nakajima, A.: The movement of a water droplet on a gradient surface prepared by photodegradation. Langmuir 23, 1845–1850 (2007)

    Article  Google Scholar 

  • Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R., Jiang, L.: A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 3, 1247 (2012)

    Article  Google Scholar 

  • Ju, J., Xiao, K., Yao, X., Bai, H., Jiang, L.: Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. Adv. Mater. 25, 5937–5942 (2013)

    Article  Google Scholar 

  • Koishi, T., Yasuoka, K., Fujikawa, S., Ebisuzaki, T., Zeng, X.C.: Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. PNAS 106, 8435–8440 (2009)

    Article  Google Scholar 

  • Koishi, T., Yasuoka, K., Fujikawa, S., Zeng, X.C.: Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: a molecular dynamics simulation study. ACS Nano 5, 6834–6842 (2011)

    Article  Google Scholar 

  • Kostoglou, M., Karapantsios, T.D., Buffone, C., Glushchuk, A., Iorio, C.: A theoretical study of steady state and transient condensation on axisymmetric fins under combined capillary and gravitational forces. Microgravity Sci. Technol. 28, 559–567 (2016)

    Article  Google Scholar 

  • Kou, J.L., Mei, M.F., Lu, H.J., Wu, F.M., Fan, J.T.: Unidirectional motion of a water nanodroplet subjected to a surface energy gradient. Phys. Rev. E 85, 056301 (2012)

    Article  Google Scholar 

  • Lei, Y.C., Chen, Z.Q., Shi, J.: Analysis of condensation heat transfer performance in curved triangle microchannels based on the volume of fluid method. Microgravity Sci. Technol. 29, 433–443 (2017)

    Article  Google Scholar 

  • Li, P.P., Chen, Z.Q., Shi, J.: Numerical study on the effects of gravity and surface tension on condensation process in square minichannel. Microgravity Sci. Technol. 30, 19–24 (2018)

    Article  Google Scholar 

  • Li, K., Ju, J., Xue, Z., Ma, J., Feng, L., Gao, S., Jiang, L.: Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat. Commun. 4, 2276 (2013)

    Article  Google Scholar 

  • Lundgren, M., Neil, L.A., Terence, C.: Modeling of wetting: a study of nanowetting at rough and heterogeneous surfaces. Langmuir 23, 1187–1194 (2007)

    Article  Google Scholar 

  • Lv, C.J., Chen, C., Chuang, Y.C., Tseng, F.G., Yin, Y.J., Grey, F., Zheng, Q.S.: Substrate curvature gradient drives rapid droplet motion. Phys. Rev. Lett. 113, 026101 (2014)

    Article  Google Scholar 

  • Martin, B., Hervé, C., Youen, V., Stéphane, D.: Electrically charged droplets in microgravity. Microgravity Sci. Technol. 29, 229–239 (2017)

    Article  Google Scholar 

  • Paradisanos, I., Fotakis, C., Anastasiadis, S.H., Stratakis, E.: Gradient induced liquid motion on laser structured black Si surfaces. Appl. Phys. Lett. 107, 111603 (2015)

    Article  Google Scholar 

  • Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  MATH  Google Scholar 

  • Price, S.L., Stone, A.J., Alderton, M.: Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry. Mol. Phys. 52(7), 987–1001 (1984)

    Article  Google Scholar 

  • Tan, X., Zhu, Y., Shi, T., Tang, Z., Liao, G.: Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment. J. Micromech. Microeng. 26, 115009 (2016)

    Article  Google Scholar 

  • Tian, X., Chen, Y., Zheng, Y., Bai, H., Jiang, L.: Controlling water capture of bioinspired fibers with hump structures. Adv. Mater. 23, 5486–5491 (2011)

    Article  Google Scholar 

  • Wang, F.C., Yang, F., Zhao, Y.P.: Size effect on the coalescence-induced self-propelled droplet. Appl. Phys. Lett. 98, 053112 (2011)

    Article  Google Scholar 

  • Wang, T., Li, W., Liu, L., Chen, H.X., Wang, Y.F., Zhang, J., Yan, Y.G.: The mechanism for the motion of nanoscale water droplet induced by wetting gradient: a molecular dynamic study. Comput. Mater. Sci. 105, 39–46 (2015)

    Article  Google Scholar 

  • Xu, T., Lin, Y., Zhang, M., Shi, W., Zheng, Y.: High-efficiency fog collector: water unidirectional transport on heterogeneous rough conical wires. ACS Nano 10, 10681–10688 (2016)

    Article  Google Scholar 

  • Yen, T.H.: Wetting characteristics of nanoscale water droplet on silicon substrates with effects of surface morphology. Mol. Simulat. 37, 766–778 (2011)

    Article  Google Scholar 

  • Yong, X., Zhang, L.T.: Nanoscale wetting on groove-patterned surfaces. Langmuir 25, 5045–5053 (2009)

    Article  Google Scholar 

  • You, I., Lee, T.G., Nam, Y.S., Lee, H.: Fabrication of a micro-omnifluidic Device by omniphilic/omniphobic patterning on nanostructured surfaces. ACS Nano 8, 9016–9024 (2014)

    Article  Google Scholar 

  • Zhang, L.G., Shi, J., Xu, B., Chen, Z.Q.: Experimental study on distribution characteristics of condensate droplets under ultrasonic vibration. Microgravity Sci. Technol., 1–10 (2018)

  • Zhang, J., Han, Y.: Shape-gradient composite surfaces: water droplets move uphill. Langmuir 23, 6136–6141 (2007a)

  • Zhang, J.L., Han, Y.C.: Shape-gradient composite surfaces: water droplets move uphill. Langmuir 23, 6136–3414 (2007b)

  • Zhang, K., Wang, F.H., Zhao, X.: The self-propelled movement of the water nanodroplet in different surface wettability gradients: a contact angle view. Comput. Mater. Sci. 124, 190–194 (2016)

    Article  Google Scholar 

  • Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F.Q., Zhao, Y., Jiang, L.: Directional water collection on wetted spider silk. Nature 463, 640 (2010)

    Article  Google Scholar 

  • Zou, Z.Z., Luo, X.H., Yu, Q.: Droplet image super resolution based on sparse representation and kernel regression. Microgravity Sci. Technol. 30, 321–329 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the China’s Manned Space Program [grant number TZ-1] and Scientific Research Foundation of Graduate School of Southeast University [grant number YBJJ1602].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Chen, Z. Droplet Movement on a Composite Wedge-Shaped Surface with Multi-Gradients and Different Gravitational Field by Molecular Dynamics. Microgravity Sci. Technol. 30, 571–579 (2018). https://doi.org/10.1007/s12217-018-9641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9641-6

Keywords

Navigation