Skip to main content
Log in

Influence of Gravity on the Stability of Evaporative Convection Regimes

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The characteristics of convective regimes in a two-layer system have been investigated in the framework of the Boussinesq approximation of the Navier–Stokes equations. An exact invariant solution of the convection equations is used to describe a joint stationary flow of an evaporating liquid and a gas-vapor mixture in a horizontal channel. Thermodiffusion effects in the gas-vapor phase are additionally taken into account in the governing equations and interface conditions. The influence of gravity and thickness of the liquid layer on the hydrodynamical, thermal and concentration characteristics of the regimes has been investigated. Flows of the pure thermocapillary, mixed and Poiseuille’s types are specified for different values of the problem parameters. The linear stability of the evaporative convection regimes has been studied. The types and properties of the arising perturbations have been investigated and the critical characteristics of the stability have been obtained. Disturbances can lead to the formation of deformed convective cells, vortex and thermocapillary structures. The change of the instability types and threshold thermal loads occurs with the increasing thickness of the liquid layer and gravity action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andreev, V.K., Kaptsov, O.V., Pukhnachov, V.V., Rodionov, A.A.: Applications of Group Theoretical Methods in Hydrodynamics, vol. 408. Kluwer Academic Publ., Dordrecht (1998)

    Book  MATH  Google Scholar 

  • Andreev, V.K., Bublik, V.V., Bytev, V.O.: Symmetries of nonclassical models of hydrodynamics, vol. 352. Novosibirsk, Nauka (2003). [in Russian]

    Google Scholar 

  • Andreev, V.K., Gaponenko, Yu.A., Goncharova, O.N., Pukhnachov, V.V.: Mathematical models of convection (De Gruyter studies in Mathematical Physics), vol. 417. De Gruyter, Berlin/Boston (2012)

    Google Scholar 

  • Bar-Cohen, A., Wang, P.: Thermal managment of on-chip hot spot. J. Heat Transfer 134(5), 051017 (2012)

    Article  Google Scholar 

  • Bekezhanova, V.B.: Convective instability of Marangoni–Poiseuille flow under a longitudinal temperature gradient. J. Appl. Mech. Tech. Phys. 52(1), 74–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Bekezhanova, V.B.: Three-dimensional disturbances of a plane-parallel two-layer flow of a viscous, heat-conducting fluid. Fluid Dyn. 47(6), 702–708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Bekezhanova, V.B., Goncharova, O.N.: Stability of the exact solutions describing the two-layer flows with evaporation at interface. Fluid Dyn. Res. 48(6), 061408 (2016)

    Article  MathSciNet  Google Scholar 

  • Bekezhanova, V.B., Goncharova, O.N., Rezanova, E.V., Shefer, I.A.: Stability of two-layer fluid flows with evaporation at the interface. Fluid Dyn. 52(2), 189–200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Berg, J.C., Acrivos, A., Boudart, M.: Evaporative convection. Adv. Chem. Eng. 6, 61–123 (1966)

    Article  Google Scholar 

  • Birikh, R.V.: Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys. 3, 43–45 (1966)

    Google Scholar 

  • Burelbach, J.P., Banko, S.G., Davis, S.H.: Nonlinear stability of evaporating/condensing films. J. Fluid Mech. 195, 463–494 (1988)

    Article  MATH  Google Scholar 

  • Colinet, P., Joannes, L., Iorio, C.S., Haute, B., Bestehorn, M., Lebon, G., Legros, J.-C.: Interfacial turbulence in evaporating liquids: Theory and preliminary results of the ITEL-master 9 sounding rocket experiment. Adv. Space Res. 32(2), 119–127 (2003)

    Article  Google Scholar 

  • Colinet, P., Legros, J.C., Velarde, M.G.: Nonlinear Dynamics of Surface-Tension-Driven Instabilities, vol. 512. Wiley-VCH, Berlin (2001)

    Book  MATH  Google Scholar 

  • Das, K.S., Ward, C.A.: Surface thermal capacity and its effects on the boundary conditions at fluid-fluid interfaces. Phys. Rev. E 75, 1–4 (2007)

    Article  Google Scholar 

  • Frezzotti, A.: Boundary conditions at the vapor–liquid interface. Phys. Fluids 23, 030609 (2011)

    Article  MATH  Google Scholar 

  • Godunov, S.: On the numerical solution of boundary value problems for systems of ordinary linear equations. Uspekhi Matem Nauk 16(3(99)), 171–174 (1961)

    Google Scholar 

  • Goncharova, O.N.: Modeling of flows under conditions of heat and mass transfer at the interface. Izvestiya of Altai State University Journal 73(1/2), 12–18 (2012)

    Google Scholar 

  • Goncharova, O.N., Hennenberg, M., Rezanova, E.V., Kabov, O.A.: Modeling of the convective fluid flows with evaporation in the two-layer systems. Interfacial Phenomena and Heat Transfer 1(4), 317–338 (2013)

    Article  Google Scholar 

  • Goncharova, O.N., Kabov, O.A.: Investigation of the two-layer fluid flows with evaporation at interface on the basis of the exact solutions of the 3D problems of convection. J. Phys.: Conf. Ser. 754, 032008 (2016)

    Google Scholar 

  • Goncharova, O.N., Rezanova, E.V.: Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface. J. Appl. Mech. Techn. Phys. 55(2), 247–257 (2014)

    Article  MATH  Google Scholar 

  • Goncharova, O.N., Rezanova, E.V.: Construction of a mathematical model of flows in a thin liquid layer on the basis of the classical convection equations and generalized conditions on an interface. Izvestiya of Altai State University Journal 85(1/1), 70–74 (2015)

    Google Scholar 

  • Goncharova, O.N., Rezanova, E.V., Lyulin, Yu.V., Kabov, O.A.: Modeling of two-layer liquid-gas flow with account for evaporation. Thermophys. Aeromech. 22(5), 631–637 (2015)

    Article  Google Scholar 

  • Haut, B., Colinet, P.: Surface-tension-driven instability of a liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 285, 296–305 (2005)

    Article  Google Scholar 

  • Hoke, B.C., Chen, J.C.: Mass transfer in evaporating falling liquid film mixtures. AIChE J. 38(5), 781–787 (1992)

    Article  Google Scholar 

  • Iorio, C.S., Goncharova, O.N., Kabov, O.A.: Study of evaporative convection in an open cavity under shear stress flow. Microgravity Sci. Technol. 21(1), 313–320 (2009)

    Article  Google Scholar 

  • Iorio, C.S., Kabov, O.A., Legros, J.-C.: Thermal Patterns in evaporating liquid. Microgravity Sci. Technol. XIX(3/4), 27–29 (2007)

    Article  Google Scholar 

  • Kabov, O.A., Kuznetsov, V.V., Kabova, Yu.O.: Evaporation, dynamics and interface deformations in thin liquid films sheared by gas in a microchannel (Chapter 2), encyclopedia of two-phase heat transfer and flow II: special topics and applications, volume 1: special topics in boiling in microchannels / micro-evaporator cooling systems. In: Thome, J.R., Kim, J. (eds.) , pp 57–108. World Scientific Publishing Company, Singapore (2015)

  • Kabova, Yu., Kuznetsov, V.V., Kabov, O., Gambaryan-Roisman, T., Stephan, P.: Evaporation of a thin viscous liquid film sheared by gas in a microchannel. Int. J. Heat Mass Transf. 68, 527–541 (2014)

    Article  Google Scholar 

  • Kandlikar, S.G., Colin, S., Peles, Y., Garimella, S., Pease, R.F., Brandner, J.J., Tuckerman, D.B.: Heat transfer in microchannels –2012 status and research needs. J. Heat Transfer 135(9), 091001 (2013)

    Article  Google Scholar 

  • Kimball, J.T., Hermanson, J.C., Allen, J.S.: Experimental investigation of convective structure evolution and heat transfer in quasi-steady evaporating liquid films. Phys. Fluids 24, 052102 (2012)

    Article  Google Scholar 

  • Klentzman, J., Ajaev, V.S.: The effect of evaporation on fingering instabilities. Phys. Fluids 21(12), 122101 (2009)

    Article  MATH  Google Scholar 

  • Kuznetsov, V.V.: Heat and mass transfer on a liquid– vapor interface. Fluid Dyn. 46(5), 754–763 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, V.V., Andreev, V.K.: Liquid film and gas flow motion in a microchannel with evaporation. Thermophys. Aeromech. 20(1), 17–28 (2013)

    Article  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, Volume 6: Fluid Mechanics, 2nd edn., vol. 554. Pergamon Press, Oxford (1987)

    Google Scholar 

  • Li, P., Chen, Z., Shi, J.: Numerical study on the effects of gravity and surface tension on condensation process in square minichannel. Microgravity Sci. Technol. 30, 19–24 (2018)

    Article  Google Scholar 

  • Liu, R., Kabov, O.A.: Instabilities in a horizontal liquid layer in co-current gas flow with an evaporating interface. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85(6), 066305 (2012)

    Article  Google Scholar 

  • Lyulin, Y., Kabov, O.: Evaporative convection in a horizontal liquid layer under shear-stress gas flow. Int. J. Heat Mass Transf. 70, 599–609 (2014)

    Article  Google Scholar 

  • Lyulin, Y., Kabov, O.: Measurement of the evaporation mass flow rate in a horizontal liquid layer partly opened into flowing gas. Tech. Phys. Lett. 39, 795–797 (2013)

    Article  Google Scholar 

  • Mancini, H., Maza, D.: Pattern formation without heating in an evaporative convection experiment. Europhys. Lett. 66(6), 812–818 (2004)

    Article  Google Scholar 

  • Margerit, J., Colinet, P., Lebon G., Iorio, C.S., Legros, J.C.: Interfacial nonequilibrium and Benard-Marangoni instability of a liquid–vapor system. Phys. Rev. E 68, 1–14 (2003)

    Article  Google Scholar 

  • Merkt, D., Bestehorn, M.: Benard–marangoni convection in a strongly evaporating field. Phys. D 185, 196–208 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Molenkamp, T.: Marangoni Convection Mass Transfer and Microgravity. 240 Ph.D. Dissertation, Rijksuniversiteit Groningen, Groningen (1998)

    Google Scholar 

  • Napolitano, L.G.: Plane Marangoni–Poiseuille flow two immiscible fluids. Acta Astronaut. 7, 461–478 (1980)

    Article  MATH  Google Scholar 

  • Narendranath, A.D., Hermanson, J.C., Kolkka, R.W., Struthers, A.A., Allen, J.S.: The effect of gravity on the stability of an evaporating liquid film. Microgravity Sci. Technol. 26(3), 189–199 (2014)

    Article  Google Scholar 

  • Nie, Z.H., Kumacheva, E.: Patterning surfaces with functional polymers. Nat. Mater. 7, 277–290 (2008)

    Article  Google Scholar 

  • Nepomnyashchy, A.A., Velarde, M.G., Colinet, P.: Interfacial Phenomena and Convection, vol. 360. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  • Oron, A.: Nonlinear dynamics of irradiated thin volatile liquid films. Phys. Fluids 12(1), 29 (2000)

    Article  MATH  Google Scholar 

  • Ostroumov, G.A.: Free Convection under the Conditions of an Internal Problem, vol. 286. Gostekhizdat Press, Moscow–Leningrad (1952). [in Russian]

    Google Scholar 

  • Oron, A., Davis, S.H., Bankoff, S.C.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931–980 (1997)

    Article  Google Scholar 

  • Ozen, O., Narayanan, R.: The physics of evaporative and convective instabilities in bilayer systems: linear theory. Phys. Fluids 16(12), 4644 (2004)

    Article  MATH  Google Scholar 

  • Prosperetti, A.: Boundary conditions at a liquid–vapor interface. Mechanica 14(1), 34–47 (1979)

    Article  MATH  Google Scholar 

  • Pukhnachov, V.V.: A plane steady-state free boundary problem for the Navier–Stokes equations. J. Appl. Mech. Techn. Phys. 13(3), 340–351 (1972)

    Article  Google Scholar 

  • Pukhnachov, V.V.: Group-theoretical nature of the Birikh’s solution and its generalizations. In: Book of Proc. Symmetry and Differential Equations, Krasnoyarsk. [in Russian], pp 180–183 (2000)

  • Pukhnachov, V.V.: Symmetries in the Navier–Stokes equations. Uspekhi Mechaniki 4(1), 6–76 (2006). [in Russian]

    Google Scholar 

  • Puknachov, V.V.: Thermocapillary convection under low gravity. Fluid Dynamics Transactions 14, 140–204 (1989)

    Google Scholar 

  • Reutov, V.P., Ezersky, A.B., Rybushkina, G.V., Chernov, V.V.: Convective structures in a thin layer of an evaporating liquid under an airflow. J. Appl. Mech. Techn. Phys. 48(4), 469–478 (2007)

    Article  MATH  Google Scholar 

  • Rezanova, E.V., Shefer, I.A.: Influence of thermal load on the characteristics of a flow with evaporation. J. Appl. Ind. Math. 11(2), 274–283 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Rodionova, A.V., Rezanova, E.V.: Stability of two-layer fluid flow. J. Appl. Mech. Tech. Phys. 57(4), 588–595 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Saenz, P.J., Valluri, P., Sefiane, K., Karapetsas, G., Matar, O.K.: Linear and nonlinear stability of hydrothermal waves in planar liquid layers driven by thermocapillarity. Phys. Fluids 25(9), 094101 (2013)

    Article  Google Scholar 

  • Saenz, P.J., Valluri, P., Sefiane, K., Karapetsas, G., Matar, O.K.: On phase change in Marangoni-driven flows and its effects on the hydrothermal-wave instabilities. Phys. Fluids 26(2), 024114 (2014)

    Article  Google Scholar 

  • Scheid, B., Margerit, J., Iorio, C.S., Joannes, L., Heraud, M., Dauby, P.C., Colinet, P.: Onset of thermal ripples at the interface of an evaporating liquid under a flow of inert gas. Exp. Fluids 52, 1107–1119 (2012)

    Article  Google Scholar 

  • Shi, W.-Y., Rong, S.-M., Feng, L.: Marangoni convection instabilities induced by evaporation of liquid layer in an open rectangular pool. Microgravity Sci. Technol. 29, 91–96 (2017)

    Article  Google Scholar 

  • Shklyaev, O.E., Fried, E.: Stability of an evaporating thin liquid film. J. Fluid Mech. 584, 157–183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Shliomis, M.I., Yakushin, V.I.: Convection in a two-layers binary system with an evaporation. Collected papers: Uchenye zapiski Permskogo Gosuniversiteta, seriya Gidrodinamika 4, 129–140 (1972). [in Russian]

    Google Scholar 

  • Sultan, E., Boudaoud, A., Amat, M.B.: Evaporation of a thin film: diffusion of the vapour and Marangoni instabilities. J. Fluid Mech. 543, 183–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Voropai, P.I., Shlepov, A.A.: Enhancement of Reliability and Efficiency of Reciprocating Compressors, vol. 359. Nedra, Moscow (1980)

    Google Scholar 

  • Zeytounian, R.: The Benard–Marangoni thermocapillary-instability problem. Usp. Phys. Nauk 168(3), 259–286 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Bekezhanova.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Russian Foundation for Basic Research (project No. 17-08-00291).

Appendix

Appendix

Unknown Function Form

Distributions of the velocity, temperature and pressure in the liquid layer are defined by the following formulae:

$$u_{1} = \frac{y^{4}}{24}\frac{g {\beta}_{1} {a^{1}_{2}}}{\nu_{1}} +\frac{y^{3}}{6} \frac{g {\beta}_{1} A}{\nu_{1}} + \frac{y^{2}}{2} c_{1} +y c_{2} + c_{3}, $$
$$T_{1} = (A + {a^{1}_{2}} y) x+ \frac{ y^{7}}{1008} \left\{ \frac{g {\beta}_{1} ({a^{1}_{2}})^{2}}{ \nu_{1} \chi_{1}} \right\} +\frac{y^{6}}{144} \left\{\frac{g {\beta}_{1} A {a^{1}_{2}}}{ \nu_{1} \chi_{1}} \right\} + $$
$$+\frac{y^{5}}{120} \frac{1}{\chi_{1}} \left\{\frac{g {\beta}_{1} (A)^{2}}{ \nu_{1} } + 3 {a^{1}_{2}} c_{1} \right\} + \frac{y^{4} }{24} \frac{1}{\chi_{1}} \{ A c_{1} + 2 {a^{1}_{2}} c_{2}\} + $$
$$+\frac{y^{3} }{6} \frac{1}{\chi_{1}} \{A c_{2} + {a^{1}_{2}} c_{3} \} + \frac{y^{2}}{2} \frac{ A}{\chi_{1}} c_{3}+ y\, c_{4} + c_{5}, $$
$$p^{\prime}_{1} = \left( \frac{y^{2}}{2}\rho_{1}g {\beta}_{1} {a^{1}_{2}} + y\rho_{1}g {\beta}_{1} A +\nu_{1}\rho_{1} c_{1} \right)x+ \frac{y^{8}}{8}k_{7} + $$
$$+ \frac{y^{7}}{7}k_{6}+\frac{y^{6}}{6}k_{5}+ \frac{y^{5}}{5}k_{4}+\frac{y^{4}}{4}k_{3} +\frac{y^{3}}{3}k_{2}+ \frac{y^{2}}{2}k_{1}+ yk_{0}+c_{8}. $$

The coefficients, which do not depend on y, are the following:

$$k_{7}=\frac{1}{1008}(g {\beta}_{1} {a_{2}^{1}})^{2} \frac{\rho_{1}}{ \nu_{1} \chi_{1}},\;\; k_{6}=\frac{1}{144}(g {\beta}_{1})^{2} \frac{\rho_{1}}{ \nu_{1} \chi_{1}} {a^{1}_{2}} A, $$
$$k_{5}=\frac{1}{120} \frac{g \rho_{1} {\beta}_{1}}{\chi_{1}} \left( \frac{g {\beta}_{1} (A)^{2}}{ \nu_{1} } + 3 {a^{1}_{2}} c_{1} \right), $$
$$k_{4}=\frac{1}{24} \frac{g \rho_{1} {\beta}_{1}}{\chi_{1}}(A c_{1} + 2 {a^{1}_{2}} c_{2}), $$
$$k_{3}=\frac{1}{6} \frac{g \rho_{1} {\beta}_{1}}{\chi_{1}}(A c_{2} + {a^{1}_{2}} c_{3}),\;\; k_{2}=\frac{1}{2} \frac{g \rho_{1} {\beta}_{1}}{\chi_{1}} A c_{3}, $$
$$k_{1}=g\rho_{1}{\beta}_{1}c_{4},\;\; k_{0}=g\rho_{1}{\beta}_{1} c_{5}. $$

The distributions of the velocity, temperature, pressure and vapor concentration in the upper layer are given by the following expressions:

$$u_{2} \,=\, \frac{y^{4}}{24} \frac{g}{\nu_{2}}({\beta}_{2} {a^{2}_{2}}+{\gamma} b_{2})+ \frac{y^{3}}{6} \frac{g}{\nu_{2}}({\beta}_{2} A +{\gamma} b_{1})+ \frac{y^{2}}{2} \overline{c}_{1} + y \overline{c}_{2} + \overline{c}_{3}, $$
$$T_{2} = (A + {a_{2}^{2}} y) x + \frac{y^{7}}{1008} B_{2} \frac{g}{\nu_{2}} ({\beta}_{2} {a^{2}_{2}}+{\gamma} b_{2}) + $$
$$+\frac{y^{6}}{720} \left[B_{1} \frac{g}{\nu_{2}} ({\beta}_{2} {a^{2}_{2}}+{\gamma} b_{2}) + 4 B_{2} \frac{g}{\nu_{2}} ({\beta}_{2} A +{\gamma} b_{1}) \right] + $$
$$+ \frac{y^{5}}{120} \left[B_{1} \frac{g}{\nu_{2}} ({\beta}_{2} A +{\gamma} b_{1}) + 3 B_{2} \overline{c}_{1} \right] + \frac{y^{4}}{24} [B_{1} \overline{c}_{1} + 2 B_{2} \overline{c}_{2}] + $$
$$+ \frac{y^{3}}{6} [B_{1} \overline{c}_{2} + B_{2} \overline{c}_{3}] + \frac{y^{2}}{2} B_{1} \overline{c}_{3} + y \overline{c}_{4} + \overline{c}_{5}, $$
$$p^{\prime}_{2}= \left[ \frac{y^{2}}{2} (\rho_{2}g {\beta}_{2} {a^{2}_{2}} +\rho_{2}g {\gamma} b_{2}) + y (\rho_{2}g {\beta}_{2} A + \rho_{2}g {\gamma} b_{1}) +\right. $$
$$\left.+\rho_{2} \nu_{2} \overline{c}_{1} \right]x+\frac{y^{8}}{8} \overline{k}_{7}+\frac{y^{7}}{7}\overline{k}_{6}+ \frac{y^{6}}{6}\overline{k}_{5}+ \frac{y^{5}}{5}\overline{k}_{4}+ $$
$$+\frac{y^{4}}{4}\overline{k}_{3}+ \frac{y^{3}}{3}\overline{k}_{2}+\frac{y^{2}}{2}\overline{k}_{1} +y\overline{k}_{0}+ \overline{c}_{8}, $$
$$C = (b_{1} + b_{2} y)x + \frac{y^{7}}{1008} \frac{g}{\nu_{2}} ({\beta}_{2} {a^{2}_{2}}+{\gamma} b_{2}) \left\{ \frac{b_{2}}{ D } - {\alpha} B_{2} \right\} + $$
$$+ \frac{y^{6}}{720} \frac{g}{\nu_{2}} \left\{ \left[\frac{b_{1}}{ D } - {\alpha} B_{1} \right]({\beta}_{2} {a^{2}_{2}}+{\gamma} b_{2}) + 4 \left[ \frac{ b_{2}}{ D } - {\alpha} B_{2} \right] \times\right. $$
$$\left.\times\,({\beta}_{2} A+{\gamma} b_{1}) \right\} + \frac{y^{5}}{120} \left\{ \frac{g }{\nu_{2}} ({\beta}_{2} A+{\gamma} b_{1}) \left[\frac{b_{1}}{D} -{\alpha} B_{1} \right] +\right. $$
$$\left.+ 3 \left[\frac{ b_{2}}{ D } - {\alpha} B_{2} \right] \overline{c}_{1} \right\} +\frac{y^{4}}{24} \left\{ \left[\frac{ b_{1}}{ D } -{\alpha} B_{1} \right] \overline{c}_{1} + 2 \left[ \frac{ b_{2}}{ D } -{\alpha} B_{2} \right] \overline{c}_{2} \right\} + $$
$$+ \frac{y^{3}}{6} \left\{ \left[\frac{ b_{1}}{ D } - {\alpha} B_{1} \right] \overline{c}_{2} + \left[\frac{ b_{2}}{ D } -{\alpha} B_{2} \right] \overline{c}_{3} \right\} + $$
$$+\frac{y^{2}}{2} \left\{ \frac{ b_{1}}{ D } - {\alpha} B_{1} \right\} \overline{c}_{3} + y \overline{c}_{6} + \overline{c}_{7}. $$

Here

$$\overline{k}_{7}=\frac{1}{1008} \frac{\rho_{2} g^{2}}{\nu_{2}} ({\beta}_{2}{a^{2}_{2}}+ {\gamma} b_{2}) \left[ ({\beta}_{2} - {\alpha} {\gamma}) B_{2} + \frac {{\gamma} b_{2}}{D} \right], $$
$$\overline{k}_{6}=\frac{1}{720} \frac{\rho_{2} g^{2}}{\nu_{2}} \left\{ ({\beta}_{2} {a_{2}^{2}}+ {\gamma} b_{2}) \left[B_{1} ({\beta}_{2} -{\alpha} {\gamma}) + \frac{{\gamma} b_{1}}{D} \right] +\right. $$
$$\left.+ 4({\beta}_{2} A+ {\gamma} b_{1}) \left[B_{2} ({\beta}_{2} -{\alpha} {\gamma}) + \frac{{\gamma} b_{2}}{D} \right]\right\}, $$
$$\overline{k}_{5}=\frac{\rho_{2}g}{120}\left\{ \frac{g}{\nu_{2}} ({\beta}_{2} A +{\gamma} b_{1}) \left[B_{1} ({\beta}_{2} -{\alpha} {\gamma})+ \frac{{\gamma} b_{1}}{D} \right] +\right. $$
$$\left.+ 3 \left[ B_{2} ({\beta}_{2} -{\alpha} {\gamma}) + \frac{{\gamma} b_{2}}{D}\right] \overline{c}_{1} \right\}, $$
$$\overline{k}_{4}=\frac{\rho_{2}g}{24}\left\{ \left[B_{1} ({\beta}_{2} -{\alpha} {\gamma})+ \frac{{\gamma} b_{1}}{D}\right] \overline{c}_{1} +\right. $$
$$\left.+ 2 \left[ B_{2} ({\beta}_{2} -{\alpha} {\gamma}) + \frac{{\gamma} b_{2}}{D}\right] \overline{c}_{2} \right\}, $$
$$\overline{k}_{3} =\frac{\rho_{2}g}{6}\left\{ \left[B_{1} ({\beta}_{2} -{\alpha} {\gamma})+ \frac{{\gamma} b_{1}}{D}\right] \overline{c}_{2} +\right. $$
$$\left.+ \left[ B_{2} ({\beta}_{2} -{\alpha} {\gamma}) + \frac{{\gamma} b_{2}}{D}\right] \overline{c}_{3} \right\}, $$
$$\overline{k}_{2}=\frac{\rho_{2}g}{2}\left[ B_{1}({\beta}_{2} -{\alpha} {\gamma})+ \frac{{\gamma} b_{1}}{D} \right] \overline{c}_{3}, $$
$$\overline{k}_{1}=\rho_{2} g {\beta}_{2} \overline{c}_{4} + \rho_{2} g {\gamma}_{2} \overline{c}_{6}, \;\; \overline{k}_{0}=\rho_{2} g {\beta}_{2} \overline{c}_{5} + \rho_{2} g {\gamma} \overline{c}_{7}. $$
$$B_{1} =\displaystyle \frac{D A - \chi_{2} \delta b_{1}}{D \chi_{2} (1 - {\alpha} \delta)}, \quad \ B_{2} = \displaystyle \frac{D {a_{2}^{2}} - \chi_{2} \delta b_{2}}{D \chi_{2} (1 - {\alpha} \delta)}. $$

Determination of Integration Constants

$$b_{2}x + \phi^{\prime}(y) + {\alpha} {a_{2}^{2}}x + {\alpha} \vartheta_{2}^{\prime}(y)= 0 $$

and

$$ \left\{ \begin{array}{ll} b_{2}+{\alpha} {a_{2}^{2}} = 0 & \Rightarrow b_{2} = -\,{\alpha} {a^{2}_{2}},\\ \phi^{\prime}(h_{2})+{\alpha}\vartheta_{2}^{\prime}(h_{2}) = 0. & \end{array} \right. $$
(A.1)

The conditions of velocity and temperature continuity (2.9) result in the relations

$$c_{3}=\overline{c}_{3}, \qquad c_{5}= \overline{c}_{5}. $$

Due to the linear temperature distribution on the rigid walls (2.7) we have

$$\vartheta_{1} (-h_{1}) = \vartheta^{-}, \quad \vartheta_{2} (h_{2}) = \vartheta^{+} $$
$$ {a_{2}^{1}} = \frac{A- A_{1}}{h_{1}}, \quad {a_{2}^{2}} = \frac{A_{2} - A}{h_{2}}, $$
(A.2)

The mass balance condition leads to the following relations

$$ M= -D \rho_{2} (\overline{c}_{6} + {\alpha} \overline{c}_{4}), \qquad b_{2} + {\alpha} {a_{2}^{2}} = 0. $$
(A.3)

The following equations are the consequence of the heat transfer condition (2.12) at the interface \(y = 0\):

$$ \begin{array}{cccc} {\kappa}_{1} {a^{1}_{2}} - {\kappa}_{2} {a_{2}^{2}} - \delta {\kappa}_{2} b_{2}= 0, \\ {\kappa}_{1} c_{4} - {\kappa}_{2} \overline{c}_{4} -\delta {\kappa}_{2} \overline{c}_{6} = -\lambda M, \end{array} $$
(A.4)

The first equality defines the following relation between \({a^{1}_{2}}\) and \({a_{2}^{2}}\):

$${a_{2}^{2}}= K_{a} {a_{2}^{1}}, \quad K_{a} = \frac{{\kappa}_{1}}{{\kappa}_{2}(1-{\alpha}\delta)}. $$

Herein condition (A.1) is taken into account. Since \({a^{1}_{2}}\) and \({a_{2}^{2}}\) are expressed in terms of A, \(A_{1}\) and \(A_{2}\) (see (A.2)), then, the following correlation is valid:

$$ A = \frac{A_{2} + \frac{h_{2}}{h_{1}}K_{a} A_{1}}{1+\frac{h_{2}}{h_{1}}K_{a}}. $$
(A.5)

The case of the equal longitudinal temperature gradients can be realized \(A=A_{1}=A_{2}\), so that \({a_{2}^{1}}={a_{2}^{2}}\).

The consequence of the Clayperon–Clausius equation in the linearized form (2.13) leads to the equalities

$$b_{1} = C_{*} \varepsilon A, \qquad \overline{c}_{7} =C_{*} + C_{*} \varepsilon (\overline{c}_{5}-T_{0}). $$

From dynamic conditions (2.11) it follows that

$$c_{2} = \frac{\rho_{2} \nu_{2}}{\rho_{1} \nu_{1}} \overline{c}_{2} + \frac{\sigma_{T} A}{\rho_{1} \nu_{1}}, \qquad c_{1} = \frac{\rho_{2} \nu_{2}}{\rho_{1} \nu_{1}} \overline{c}_{1}. $$

The system of equations to determine the unknown integration constants \(\overline {c}_{1}\), \(\overline {c}_{2}\), \(\overline {c}_{3}\) results from no-slip conditions (2.6) and conditions of the given gas flow rate (2.14):

$$\frac{l^{2}}{2} \frac{\rho_{2} \nu_{2}}{\rho_{1} \nu_{1}} \overline{c}_{1} - l \frac{\rho_{2} \nu_{2}}{\rho_{1} \nu_{1}} \overline{c}_{2} +\overline{c}_{3} = l \frac{\sigma_{T} A }{\rho_{1} \nu_{1}} - \frac{g {\beta}_{1}}{\nu_{1}}\left( \frac{l^{4}}{24}{a_{2}^{1}}- \frac{l^{3}}{6}A\right), $$
$$\frac{h^{2}}{2} \overline{c}_{1}+h \overline{c}_{2} + \overline{c}_{3} =$$
$$- \frac{g}{\nu_{2}} \left( \frac{h^{4}}{24}({\beta}_{2}{a_{2}^{2}}+{\gamma} b_{2})+\frac{h^{3}}{6}({\beta}_{2} A+{\gamma}b_{1})\right), $$
$$\frac{h^{3}}{6} \overline{c}_{1} + \frac{h^{2}}{2} \overline{c}_{2} + h \overline{c}_{3} = $$
$$\frac{Q}{\rho_{2}} - \frac{g}{\nu_{2}} \left( \frac{h^{5}}{120} ({\beta}_{2} {a_{2}^{2}} +{\gamma} b_{2})+\frac{h^{4}}{24} ({\beta}_{2} A + {\gamma} b_{1})\right). $$

If \(\overline {c}_{1}\), \(\overline {c}_{2}\), \(\overline {c}_{3}\) have been calculated, then \(c_{1}\), \(c_{2}\), \(c_{3}\) can be found.

In view of the exact solution form and the second equality in (A.1), we have the relationship between the constants \(\overline {c}_{4}\) and \(\overline {c}_{6}\):

$${\alpha}\overline{c}_{4}+\overline{c}_{6} = F, $$
$$F =-\frac{h^{6}}{144}\frac{g}{\nu_{2}}\frac{b_{2}}{D}{a_{2}^{2}}({\beta}_{2}-{\alpha}{\gamma})- $$
$$-\frac{h^{5}}{120}\frac{g}{\nu_{2}}\left( \frac{b_{1}}{D}{a_{2}^{2}}({\beta}_{2}-{\alpha}{\gamma}) + 4\frac{b_{2}}{D}({\beta}_{2} A + {\gamma} b_{1})\right) -$$
$$-\frac{h^{4}}{24}\left( \frac{g}{\nu_{2}}\frac{b_{1}}{D} ({\beta}_{2} A + {\gamma} b_{1}) + 3\frac{b_{2}}{D}\overline{c}_{1}\right) - $$
$$-\frac{h^{3}}{6} \left( \frac{b_{1}}{D}\overline{c}_{1} + 2\frac{b_{2}}{D} \overline{c}_{2} \right)- $$
$$- \frac{h^{2}}{2} \left( \frac{b_{1}}{D}\overline{c}_{2} +\frac{b_{2}}{D} \overline{c}_{3} \right) - h \frac{b_{1}}{D}\overline{c}_{3}. $$

The mass of the evaporating liquid is calculated with the help of the first from the sequences of the mass balance Eq. A.3: \(M = -D\rho _{2} F\).

The second equality from (A.4) sets the dependence of the integration constant \(c_{4}\) on \(\overline {c}_{4}\) and \(\overline {c}_{6}\):

$$c_{4} = \frac{{\kappa}_{2}}{{\kappa}_{1}}\overline{c}_{4} +\frac{\delta{\kappa}_{2}}{{\kappa}_{1}} \overline{c}_{6} -\frac{\lambda M}{{\kappa}_{1}}. $$

The constants \(\overline {c}_{4}\), \(\overline {c}_{6}\) and \(c_{5}\) are determined from the system of equations being the result of the conditions for the temperature on the solid channel walls \( \vartheta _{1} (-h_{1}) = \vartheta ^{-}\), \(\vartheta _{2} (h_{2}) = \vartheta ^{+}\) (see (A.2)) and mass balance Eq. A.3:

$$- l \frac{{\kappa}_{2}}{{\kappa}_{1}}\overline{c}_{4} - l \frac{\delta{\kappa}_{2}}{{\kappa}_{1}} \overline{c}_{6} + c_{5} = \vartheta^{-} + \frac{l^{7}}{1008}\frac{g{\beta}_{1}({a_{2}^{1}})^{2}}{\nu_{1}\chi_{1}}- $$
$$-\frac{l^{6}}{144}\frac{g{\beta}_{1} A {a_{2}^{1}}}{\nu_{1}\chi_{1}}+ \frac{l^{5}}{120} \left( \frac{g {\beta}_{1} A^{2}}{\chi_{1} \nu_{1}}+\frac{3{a_{2}^{1}}}{\chi_{1}}c_{1}\right) - $$
$$\frac{l^{4}}{24}\left( \frac{A}{\chi_{1}} c_{1} +\frac{2{a_{2}^{1}}}{\chi_{1}}c_{2} \right) +\frac{l^{3}}{6}\left( \frac{A}{\chi_{1}} c_{2} + \frac{{a_{2}^{1}}}{\chi_{1}}c_{3}\right) - $$
$$- \frac{l^{2}}{2} \frac{A}{\chi_{1}} c_{3} -l\frac{\lambda M}{{\kappa}_{1}}, $$
$$h \overline{c}_{4} + c_{5} = \vartheta^{+} - \frac{h_{7}}{1008}B_{2}\frac{g}{\nu_{2}}\left( {\beta}_{2} {a_{2}^{2}} + {\gamma} b_{2}\right) - $$
$$- \frac{h^{6}}{720}\frac{g}{\nu_{2}}\left[B_{1}\left( {\beta}_{2} {a_{2}^{2}} + {\gamma} b_{2}\right) + + 4B_{2}\left( {\beta}_{2} A + {\gamma} b_{1}\right)\right]- $$
$$- \frac{h^{5}}{120} \left[B_{1} \frac{g}{\nu_{2}} ({\beta}_{2} A + {\gamma} b_{1}) + 3B_{2} \overline{c}_{1}\right] - \frac{h^{4}}{24}\left[B_{1} \overline{c}_{1} + 2B_{2}\overline{c}_{2} \right] - $$
$$- \frac{h^{3}}{6} \left[B_{1} \overline{c}_{2} + B_{2}\overline{c}_{3} \right] - \frac{h^{2}}{2} B_{1} \overline{c}_{3}, $$
$${\alpha}\overline{c}_{4}+\overline{c}_{6} = F. $$

Here, the condition \(c_{5}= \overline {c}_{5}\) and the second relationship from (A.3) are taken into account.

A special case \(b_{2} = 0\) (\({a_{2}^{2}} = {a_{2}^{1}} = 0\)s) can be realized.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekezhanova, V.B., Shefer, I.A. Influence of Gravity on the Stability of Evaporative Convection Regimes. Microgravity Sci. Technol. 30, 543–560 (2018). https://doi.org/10.1007/s12217-018-9628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9628-3

Keywords

Navigation