Microgravity Science and Technology

, Volume 30, Issue 4, pp 411–417 | Cite as

The Movement of an Ion-exchange Microparticle in a Weak External Electric Field

  • Georgy GanchenkoEmail author
  • Elizaveta Frants
  • Vladimir Shelistov
  • Evgeny Demekhin
Original Article
Part of the following topical collections:
  1. Topical Collection on Non-Equilibrium Processes in Continuous Media under Microgravity


The electrokinetic motion of spherical particle suspended in the electrolyte solution under influence of external electric field is studied. Due to impermeability of particle’s surface for one kind of ion species the particle exhibit behavior different to well investigated dielectric particles. Under an assumption of a weak external electric field, we derive the analytical estimation of the particle’s velocity by means of a method of matched asymptotic expansions. The analytical analysis is complemented by numerical solution, which gives the distribution of ion’s concentrations, electric potential profiles and flows streamlines. The analytical results are successfully compared with the results of numerical simulation.


Ion-exchange microparticle Asymptotic expansions Weak field electrophoresis Electrophoretic velocity Method of matched asymptotic expansions 


  1. Barany, S.: Electrophoresis in strong electric fields. Adv. Colloid Interface Sci. 147148, 36–43 (2009)CrossRefGoogle Scholar
  2. Barinova, N.O., Mishchuk, N.A., Nesmeyanova, T.A.: Electroosmosis at Spherical and Cylindrical Metal Surfaces. Colloid J. 70(6), 695–702 (2008)CrossRefGoogle Scholar
  3. Chang, H-C, Demekhin, E.A., Shelistov, V.S.: Competition between Dukhin’s and Rubinstein’s electrokinetic modes. Phys. Rev. E 86(4), 046319 (2012)CrossRefGoogle Scholar
  4. Demekhin, E.A., Nikitin, N.V., Shelistov, V.S.: Direct numerical simulation of electrokinetic instability and transition to chaotic motion. Phys. Fluids 25(12), 122001 (2013)CrossRefGoogle Scholar
  5. Dukhin, S.S.: Electrokinetic phenomena of the second kind and their applications. Adv. Colloid Interf. Sci. V 35, 173–196 (1991)CrossRefGoogle Scholar
  6. Dukhin, S.S., Derjaguin, B.V.: Electrokinetic phenomena. Wiley, New York (1974)Google Scholar
  7. Gamayunov, N.I., Mantrov, G.I., Murtsovkin, V.A.: Study of flows induced in the vicinity of conducting particles by an external electric field. Colloid J. V 54, 20–23 (1992)Google Scholar
  8. Gamayunov, N.I., Murtsovkin, V.A., Dukhin, A.S.: Pair interaction of particles in electric field. 1. features of hydrodynamic interaction of polarized particles. Colloid J. USSR. V(48), 197–203 (1986)Google Scholar
  9. Guo, Q., Ye, F., Guo, H., Ma, C.F.: Gas/water and heat management of PEM-based fuel cell and electrolyzer systems for space applications. Microgravity Sci. Technol. 29, 49–63 (2017)CrossRefGoogle Scholar
  10. Helmholtz, H.: Studien über electrische grenzschichten. Ann. Phys. Chem. 7(ser. 3), 337–382 (1879)CrossRefzbMATHGoogle Scholar
  11. Mishchuk, N.A., Barinova, N.O.: Theoretical and Experimental Study of Nonlinear Electrophoresis. Colloid J. 73(1), 88–96 (2011)CrossRefGoogle Scholar
  12. Mishchuk, N.A., Takhistov, P.V.: Electroosmosis of the second kind. Colloids Surf., A V(95), 119–131 (1995)CrossRefGoogle Scholar
  13. Murtsovkin, A.: Nonlinear flows near polarized disperse particles. Colloid J. V 58, 341–349 (1996)Google Scholar
  14. Murtsovkin, V.A., Mantrov, G.I.: Steady flows in the neighborhood of a drop of mercury with the application of a variable external electric field. Colloid J. USSR. V 53, 240–244 (1991)Google Scholar
  15. O’Brien, R.W., White, L.R.: Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc Faraday Trans. 2(74), 1607–1626 (1978)CrossRefGoogle Scholar
  16. Rubinstein, I., Shtilman, L.: Voltage against current curves of cation exchange membranes. J. Chem. Soc. Faraday Trans. 75, 231 (1979)CrossRefGoogle Scholar
  17. Schnitzer, O., Zeyde, R., Yavneh, I., Yariv, E.: Weakly nonlinear electrophoresis of a highly charged colloidal particle. Phys. Fluids 25, 052004 (2013)CrossRefGoogle Scholar
  18. Shelistov, V.S., Nikitin, N.V., Ganchenko, G.S., Demekhin, E.A.: Numerical modeling of electrokinetic instability in semipermeable membranes. Dokl. Phys. 56, 538 (2011)CrossRefGoogle Scholar
  19. Van Dyke, M.: Perturbation methods in fluid mechanics. Academic Press, New York (1964)zbMATHGoogle Scholar
  20. Von Smoluchowski, M.: Contribution a la théorie de l’endosmose électrique et de quelques phénoménes corrélatifs. Bull. Acad. Sci. Cracovie 8, 182–200 (1903)zbMATHGoogle Scholar
  21. Wiersema, P.H., Loeb, A.L., Overbeek, J.T.G.: Calculation of the electrophoretic mobility of a spherical colloid particle. J. Colloid Interface Sci. 22, 78–99 (1966)CrossRefGoogle Scholar
  22. Zaltzman, B., Rubinstein, I.: Electro-osmotic slip and electroconvective instability. J. Fluid Mech. 579, 173–226 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Micro-and Nanoscale Electro-and HydrodynamicsFinancial University under the Government of Russian FederationKrasnodarRussian Federation
  2. 2.Department of Mathematics and Computer ScienceFinancial University under the Government of Russian FederationKrasnodarRussian Federation
  3. 3.Department of Applied MathematicsKuban State UniversityKrasnodarRussian Federation
  4. 4.Institut de Mécanique et d’Ingénierie - TREFLE, UMR CNRS 5295University of BordeauxPessac CedexFrance
  5. 5.Laboratory of General Aeromechanics, Institute of MechanicsMoscow State UniversityMoscowRussian Federation

Personalised recommendations