Skip to main content
Log in

Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Boisson, J., Lamriben, C., Maas, L.R.M., Cortet, P., Moisy, F.: Inertial waves and modes excited by the libration of a rotating cube. Phys. Fluids 24, 076602 (2012)

    Article  Google Scholar 

  • Borcia, I.D., Abouzar, G.V., Harlander, U.: Inertial wave mode excitation in a rotating annulus with partially librating boundaries. Fluid Dyn. Res. 46, 041423 (2014)

    Article  MathSciNet  Google Scholar 

  • Brouzet, C., Sibgatullin, I.N., Scolan, H., Ermanyuk, E.V., Dauxois, T.: Internal wave attractors examined using laboratory experiments and 3D numerical simulations. J. Fluid Mech. 793, 109–131 (2016)

    Article  Google Scholar 

  • Brungs, S., Egli, M., Wuest, S.L., Christianen, P.C.M., Van Loon, J.J.W.A., Ngo Anh, T.J., Hemmersbach, R.: Facilities for simulation of microgravity in the ESA ground-based facility programme. Microgravity Sci. Technol. 28, 191–203 (2016)

    Article  Google Scholar 

  • Busse, F.H.: Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 650, 505–512 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Busse, F.H.: Zonal flow induced by longitudinal librations of a rotating cylindrical cavity. Physica D 240, 208–211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Calkins, M.A., Noir, J., Eldredge, J.D., Aurnou, J.M.: Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids 22, 086602 (2010)

    Article  Google Scholar 

  • Ermanyuk, E.V., Gavrilov, N.V.: Internal-wave radiation and optical measurements in stratified fluids. Microgravity Sci. Technol. 19, 144–147 (2007)

    Article  Google Scholar 

  • Favier, B., Barker, A., Baruteau, C., Ogilvie, G.: Nonlinear evolution of tidally forced inertial waves in rotating fluid bodies. Mon. Not. R. Astron. Soc. 439, 845–860 (2014)

    Article  Google Scholar 

  • Greenspan, H.P.: The Theory of Rotating Fluids. University Press, Cambridge (1968)

    MATH  Google Scholar 

  • Hoff, M., Harlander, U., Egbers, C.: Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech. 789, 589–616 (2016)

    Article  Google Scholar 

  • Kerswell, R.: On the internal shear layers spawned by the critical regions in oscillatory Ekman boundary layers. J. Fluid Mech. 298, 311–325 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Klein, M., Seelig, T., Kurgansky, M.V., Ghasemi, A.V., Borcia, I.D., Will, A., Schaller, E., Egbers, C., Harlander, U.: Inertial wave excitation and focusing in a liquid bounded by a frustum and a cylinder. J. Fluid Mech. 751, 255–297 (2014)

    Article  Google Scholar 

  • Koch, S., Harlander, U., Egbers, C., Hollerbach, R.: Inertial waves in a spherical shell induced by librations of the inner sphere: Expe- rimental and numerical results. Fluid Dyn. Res. 45, 035504 (2013)

    Article  MATH  Google Scholar 

  • Kozlov, V.G., Kozlov, N.V.: Vibrational dynamics of a light body in a liquid-filled rotating cylinder. Fluid Dyn. 43(1), 9–19 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kozlov, V.G., Ivanova, A.A.: Dramatic effect of vibrations on dynamics of rotating hydrodynamic systems. Microgravity Sci. Technol. 21, 339–348 (2009)

    Article  Google Scholar 

  • Kozlov, V., Polezhaev, D.: Flow patterns in a rotating horizontal cylinder partially filled with liquid. Phys. Rev. E 92, 013016 (2015)

    Article  MathSciNet  Google Scholar 

  • Kozlov, V.G., Ivanova, A.A., Vjatkin, A.A., Sabirov, R.R.: Vibrational convection of heat-generating fluid in a rotating horizontal cylinder. The role of relative cavity length. Acta Astronaut. 112, 48–55 (2015)

    Article  Google Scholar 

  • Kozlov, V.G., Kozlov, N.V., Subbotin, S.V.: Steady flows excited by circular oscillations of free inner core in rotating spherical cavity. Eur. J. Mech. B-Fluids 58(4), 85–94 (2016)

    Article  Google Scholar 

  • Le Bars, M., Cébron, D., Le Gal, P.: Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163–193 (2015)

    Article  MathSciNet  Google Scholar 

  • Lopez, J.M., Marques, F.: Rapidly rotating cylinder flow with an oscillating sidewall. Phys. Rev. E. 89, 013013 (2014)

    Article  Google Scholar 

  • Margot, J.L., Peale, S.J., Jurgens, R.F., Slade, M.A., Holin, I.V.: Large longitude libration of Mercury reveals a molten core. Science 316, 710–714 (2007)

    Article  Google Scholar 

  • McEwan, A.D.: Inertial oscillations in a rotating fluid cylinder. J. Fluid Mech. 40, 603–639 (1970)

    Article  Google Scholar 

  • Messio, L., Morize, C., Rabaud, M., Moisy, F.: Experimental observation using particle image velocimetry of inertial waves in a rotating fluid. Exp. Fluids 44, 519–528 (2008)

    Article  Google Scholar 

  • Morize, C., Le Bars, M., Le Gal, P., Tilgner, A.: Experimental determination of zonal winds driven by tides. Phys. Rev. Lett. 104, 214501 (2010)

    Article  Google Scholar 

  • Noir, J., Calkins, M.A., Lasbleis, M., Cantwell, J., Aurnou, J.M.: Experimental study of libration-driven zonal flows in a straight cylinder. Phys. Earth Planet Inter. 182, 98–106 (2010)

    Article  Google Scholar 

  • Rieutord, M., Georgeot, B., Valdettaro, L.: Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435, 103–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Sauret, A., Le Dizès, S.: Steady flow induced by longitudinal libration in a spherical shell. J. Fluid Mech. 718, 181–209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Sauret, A., Cebron, D., Morize, C., Le Bars, M.: Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 662, 260–268 (2010)

    Article  MATH  Google Scholar 

  • Sauret, A., Cébron, D., Le Bars, M., Le Dizès, S.: Fluid flows in a librating cylinder. Phys. Fluids 24, 026603 (2012)

    Article  Google Scholar 

  • Sauret, A., Le Bars, M., Le Gal, P.: Tide-driven shear instability in planetary liquid cores. Geophys. Res. Lett. 41, 6078–6083 (2014)

    Article  Google Scholar 

  • Tilgner, A.: Zonal wind driven by inertial modes. Phys. Rev. Lett. 99, 194501 (2007)

    Article  Google Scholar 

  • Thielicke, W., Stamhuis, E.J.: PIVLab – Time-resolved digital particle image velocimetry tool for MATLAB (version: 1.41). J. Open Res. Software 2(1), e30 (2014)

    Google Scholar 

  • Wang, C.Y.: Cylindrical tank of fluid oscillating about a steady rotation. J. Fluid Mech. 41, 581–592 (1970)

    Article  MATH  Google Scholar 

  • Warnke, E., Kopp, S., Wehland, M., Hemmersbach, R., Bauer, J., Pietsch, J., Infanger, M., Grimm D.: Thyroid cells exposed to simulated microgravity conditions – comparison of the fast rotating clinostat and the random positioning machine. Microgravity Sci. Technol. 28, 247–260 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Russian Foundation for Basic Research (project Nos. 16-31-60099 mol_a_dk and16-31-00169 mol_a) and grant of the President of the Russian Federation for the support of Leading Scientific Schools of the Russian Federation (grant NSh-9176.2016.1). We are grateful to Professor V.G. Kozlov for a fruitful discussion of the experimental results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Subbotin.

Additional information

This article belongs to the Topical Collection: Non-Equilibrium Processes in Continuous Media under Microgravity

Guest Editor: Tatyana Lyubimova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbotin, S., Dyakova, V. Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder. Microgravity Sci. Technol. 30, 383–392 (2018). https://doi.org/10.1007/s12217-018-9621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9621-x

Keywords

Navigation