Skip to main content
Log in

Effect of Local Vibration and Passive Exercise on the Hormones and Neurotransmitters of Hypothalamic–Pituitary–Adrenal Axis in Hindlimb Unloading Rats

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Astronauts are severely affected by spaceflight-induced bone loss. Mechanical stimulation through exercise inhibits bone resorption and improves bone formation. Exercise and vibration can prevent the degeneration of the musculoskeletal system in tail-suspended rats, and long-term exercise stress will affect endocrine and immune systems that are prone to fatigue. However, the mechanisms through which exercise and vibration affect the endocrine system remain unknown. This study mainly aimed to investigate the changes in the contents of endocrine axis-related hormones and the effects of local vibration and passive exercise on hypothalamic–pituitary–adrenal (HPA) axis-related hormones in tail-suspended rats. A total of 32 Sprague–Dawley rats were randomly distributed into four groups (n = 8 per group): tail suspension (TS), TS + 35Hz vibration, TS + passive exercise, and control. The rats were placed on a passive exercise and local vibration regimen for 21 days. On day 22 of the experiment, the contents of corticotrophin-releasing hormone, adrenocorticotropic hormone, cortisol, and 5-hydroxytryptamine in the rats were quantified with kits in accordance with the manufacturer’s instructions. Histomorphometry was applied to evaluate histological changes in the hypothalamus. Results showed that 35Hz local vibration cannot cause rats to remain in a stressed state and that it might not inhibit the function of the HPA axis. Therefore, we speculate that this local vibration intensity can protect the function of the HPA axis and helps tail-suspended rats to transition from stressed to adaptive state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida-Silveira, M.I., Lambertz, D., Perot, C., Goubel, F.: Changes in stiffness induced by hindlimb suspension in rat Achilles tendon. Eur. J Appl. Physiol. 81(3), 252–257 (2000). https://doi.org/10.1007/s004210050039

    Article  Google Scholar 

  • Baecker, N., Frings-Meuthen, P., Heer, M., Mester, J., Liphardt, A.M.: Effects of vibration training on bone metabolism: results from a short-term bed rest study. Eur. J Appl. Physiol. 112(5), 1741–1750 (2012). https://doi.org/10.1007/s00421-011-2137-3

    Article  Google Scholar 

  • Baldwin, K.M.: Effect of spaceflight on the functional, biochemical, and metabolic properties of skeletal muscle. Medicine Sci. Sports Exerc. 28(8), 983–987 (1996)

    Article  Google Scholar 

  • Cardinale, M., Bosco, C.: The use of vibration as an exercise intervention. Exerc. Sport Sci. Rev. 31(1), 3–7 (2003). https://doi.org/10.1097/00003677-200301000-00002

    Article  Google Scholar 

  • Caren, L.D., Mandel, A.D., Nunes, J.A.: Effect of simulated weightlessness on the immune system in rats. Aviation Space Environ. Med. 51(3), 251–255 (1980)

    Google Scholar 

  • Castrogiovanni, P., Trovato, F.M., Szychlinska, M.A., Nsir, H., Imbesi, R., Musumeci, G.: The importance of physical activity in osteoporosis. From the molecular pathways to the clinical evidence. Histol. Histopathol. 31(11), 1183–1194 (2016). https://doi.org/10.14670/HH-11-793

    Google Scholar 

  • Cerciello, S., Rossi, S., Visona, E., Corona, K., Oliva, F.: Clinical applications of vibration therapy in orthopaedic practice. Muscles Ligaments Tendons. J 6(1), 147–156 (2016). https://doi.org/10.11138/mltj/2016.6.1.147

    Google Scholar 

  • Clement, G.R., Bukley, A.P., Paloski, W.H.: Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions. Frontiers Syst. Neurosci. 9, 92 (2015). https://doi.org/10.3389/fnsys.2015.00092

    Google Scholar 

  • del Corral, P., Mahon, A.D., Duncan, G.E., Howe, C.A., Craig, B.W.: The effect of exercise on serum and salivary cortisol in male children. Med. Sci. Sports Exerc. 26(11), 1297–1301 (1994)

    Google Scholar 

  • Dudley-Javoroski, S., Petrie, M.A., McHenry, C.L., Amelon, R.E., Saha, P.K., Shields, R.K.: Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb. Osteoporosis Intern.: J Establ. Result Cooperation Between Eur. Found Osteoporosis Nat. Osteoporosis Found USA 27(3), 1149–1160 (2016). https://doi.org/10.1007/s00198-015-3326-4

    Article  Google Scholar 

  • Esposito, R.D., Durante, M., Gialanella, G., Grossi, G., Pugliese, M., Scampoli, P., Jones, T.D.: On the radiosensitivity of man in space. Adv. Space Res.: Official J Commit Space Res. (COSPAR) 27(2), 345–354 (2001)

    Article  Google Scholar 

  • Strollo, F.: Hormonal changes in humans during spaceflight. Adv. Space Biol. Med. 7, 99–129 (1999)

    Article  Google Scholar 

  • Fitts, R.H., Riley, D.R., Widrick, J.J.: Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl. Physiol. 89(2), 823–839 (2000)

    Article  Google Scholar 

  • Fry, R.W., Morton, A.R., Garcia-Webb, P., Keast, D.: Monitoring exercise stress by changes in metabolic and hormonal responses over a 24-h period. Eur. J Appl. Physiol. Occupational Physiol. 63(3–4), 228–234 (1991)

    Article  Google Scholar 

  • Gong, S., Miao, Y.L., Jiao, G.Z., Sun, M.J., Li, H., Lin, J., Luo, M.J., Tan, J.H.: Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. Plos ONE 10(2), e0117503 (2015). https://doi.org/10.1371/journal.pone.0117503

    Article  Google Scholar 

  • Huang, Y., Luan, H., Sun, L., Bi, J., Wang, Y., Fan, Y.: Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats. Acta Astronautica (2017)

  • Ji, H.P., Seo, D.H., Cho, S., Kim, S.H., Eom, S., Han, S.K.: Effects of partial vibration on morphological changes in bone and surrounding muscle of rats under microgravity condition: comparative study by Gender. Micrograv. Sci. Technol. 27(5), 1–8 (2015)

    Google Scholar 

  • Kaur, I., Simons, E.R., Castro, V.A., Mark Ott, C., Pierson, D.L.: Changes in neutrophil functions in astronauts. Brain Behavior Immun. 18(5), 443–450 (2004). https://doi.org/10.1016/j.bbi.2003.10.005

    Article  Google Scholar 

  • Lackner, J.R., DiZio, P.: Space adaptation syndrome: multiple etiological factors and individual differences. J. Washington Acad. Sci. Washington DC 81(2), 89–100 (1991)

    Google Scholar 

  • Li, W.T., Huang, Y.F., Sun, L.W., Luan, H.Q., Zhu, B.Z., Fan, Y.B.: Would interstitial fluid flow be responsible for skeletal maintenance in tail-suspended rats?. Micrograv. Sci. Technol. 29(1–2), 107–114 (2017)

    Article  Google Scholar 

  • Macho L1, K.R., Vigas, M., Nemeth, S., Popova, I., Tigranian, R.A., Noskov, V.B., Serova, L., Grigoriev, I.A.: Effect of space flights on plasma hormone levels in man and in experimental animal. Acta Astronautica (23), 117–121 (1991)

  • Macho, L., Kvetnansky, R., Nemeth, S., Fickova, M., Popova, I., Serova, L., Grigoriev, A.I.: Effects of space flight on endocrine system function in experimental animals. Environ. Med.: Ann. Report Res. Inst. Environ. Med. Nagoya Univ. 40(2), 95–111 (1996)

    Google Scholar 

  • Martinez, E.M., Yoshida, M.C., Candelario, T.L., Hughes-Fulford, M.: Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Amer. J Physiol. Regul. Integ. Comp. Physiol. 308(6), R480–R488 (2015). https://doi.org/10.1152/ajpregu.00449.2014

    Article  Google Scholar 

  • Morey-Holton, E.R., Globus, R.K.: Hindlimb unloading rodent model: technical aspects. J Appl. Physiol. 92(4), 1367–1377 (2002). https://doi.org/10.1152/japplphysiol.00969.2001

    Article  Google Scholar 

  • Murfee, W.L., Hammett, L.A., Evans, C., Xie, L., Squire, M., Rubin, C., Judex, S., Skalak, T.C.: High-frequency, low-magnitude vibrations suppress the number of blood vessels per muscle fiber in mouse soleus muscle. J Appl. Physiol. 98(6), 2376–2380 (2005)

    Article  Google Scholar 

  • Musumeci, G.: The effect of mechanical loading on articular cartilage. J Funct. Morphol. Kinesiol. 1(2), 154–161 (2016)

    Article  Google Scholar 

  • Musumeci, G.: The use of vibration as physical exercise and therapy 2(2) (2017)

  • Musumeci, G., Loreto, C., Leonardi, R., Castorina, S., Giunta, S., Carnazza, M.L., Trovato, F.M., Pichler, K., Weinberg, A.M.: The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Miner. Metab. 31(3), 274–284 (2013)

    Article  Google Scholar 

  • Pichler, K., Loreto, C., Leonardi, R., Reuber, T., Weinberg, A.M., Musumeci, G.: RANKL Is downregulated in bone cells by physical activity (treadmill and vibration stimulation training) in rat with glucocorticoid-induced osteoporosis. Histol. Histopathol. 28(9), 1185 (2013)

    Google Scholar 

  • Reeves, N.D., Maganaris, C.N., Ferretti, G., Narici, M.V.: Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl. Physiol. 98(6), 2278–2286 (2005). https://doi.org/10.1152/japplphysiol.01266.2004

    Article  Google Scholar 

  • Ritzmann, R., Krause, A., Freyler, K., Gollhofer, A.: Gravity and neuronal adaptation. Neurophysiology of reflexes from hypo- to hypergravity conditions. Micrograv. Sci. Technol., 29 (2017)

  • Riviere, D.: Physiological changes in microgravity. Bulletin de l’Academie nationale de medecine 193(7), 1633–1644 (2009)

    Google Scholar 

  • Schneider, S., Askew, C.D., Brummer, V., Kleinert, J., Guardiera, S., Abel, T., Struder, H.K.: The effect of parabolic flight on perceived physical, motivational and psychological state in men and women: correlation with neuroendocrine stress parameters and electrocortical activity. Stress (Amsterdam Netherlands) 12(4), 336–349 (2009). https://doi.org/10.1080/10253890802499175

    Article  Google Scholar 

  • Si, S., Song, S., Hua, N., Han, H., Xu, B., Wang, G., Zhang, C., Wu, W.: [Combined simulated weightlessness and noise affect cell cycles and composition in rat thymocytes]. Xi bao yu fen zi mian yi xue za zhi = Chin. J Cell Molecul. Immunol. 32(3), 304–307 (2016)

    Google Scholar 

  • Sonnenfeld, G.: Effect of space flight on cytokine production. Acta Astronaut. 33, 143–147 (1994)

    Article  Google Scholar 

  • Sonnenfeld, G.: Immune responses in space flight. Intern. J Sports Med. 19(Suppl 3), S195-202 (1998). discussion S202–194. https://doi.org/10.1055/s-2007-971992

    Article  Google Scholar 

  • Strewe, C., Feuerecker, M., Nichiporuk, I., Kaufmann, I., Hauer, D., Morukov, B., Schelling, G., Chouker, A.: Effects of parabolic flight and spaceflight on the endocannabinoid system in humans. Rev. Neurosci. 23(5–6), 673–680 (2012). https://doi.org/10.1515/revneuro-2012-0057

    Google Scholar 

  • Sun, L., Luan, H., Huang, Y., Wang, Y., Fan, Y.: Effects of local vibration on bone loss in-tail-suspended rats. Intern. J Sports Med. 35(7), 615–624 (2014)

    Article  Google Scholar 

  • VanBruggen, M.D., Hackney, A.C., McMurray, R.G., Ondrak, K.S.: The relationship between serum and salivary cortisol levels in response to different intensities of exercise. Intern. J Sports Physiol. Perform. 6(3), 396–407 (2011)

    Article  Google Scholar 

  • Xie Minhao, Y.Y., Zhang, Y.: Sports Endocrinology. Beijing Sport University Press, Beijing (2008)

    Google Scholar 

Download references

Acknowledgments

This work was funded by grants from Fundamental Research Funds for Central Public Welfare Research Institutes (118009001000160001), China National Key Research and Development Plan Project (No. 2016YFB1101102) and Beijing outstanding young backbone personnel training project (No. 2017000026825G280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubo Fan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

All animal treatments were conducted in accordance with the Regulation of Administration of Affairs Concerning Experimental Animals of State Science and Technology Commission of China and were approved by the Animal Care Committee of Beihang University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, H., Huang, Y., Li, J. et al. Effect of Local Vibration and Passive Exercise on the Hormones and Neurotransmitters of Hypothalamic–Pituitary–Adrenal Axis in Hindlimb Unloading Rats. Microgravity Sci. Technol. 30, 483–489 (2018). https://doi.org/10.1007/s12217-018-9609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9609-6

Keywords

Navigation