Microgravity Science and Technology

, Volume 30, Issue 4, pp 361–367 | Cite as

Influence of the Electric Field on Parametric Instability of Two-layer System

  • E. S. SadilovEmail author
Original Article
Part of the following topical collections:
  1. Topical Collection on Non-Equilibrium Processes in Continuous Media under Microgravity


This article considers the influence of an electric field on the instability of the interface between two fluids, of which one is an ideal electrically conducting fluid, and another is an ideal dielectric fluid. Our study has been carried out under the assumption of small viscosity, which allows to use the boundary layer theory. The boundary layer structure is investigated using the method of multiple scales. Instability boundaries near the threshold of the instability are found analytically.


Parametric instability Electric field Two-layer system 



The work was carried out with the financial support of the project No 0014-2015-0026 (Program No IV.4.12).


  1. Cherepanov, A. A.: Vliyanie peremennyh vneshnih polei na neustoichivost’ Releya-Teilora, Nekotorye zadachi ustoichivosti poverhnosti zhidkosti, 29–53 Sverdlovsk. (in Russian) (1984)Google Scholar
  2. Faraday, M.: On a peculiar class acoustical figures on certain forms assumed by a group of particles upon elastic surface. Phil. Trans Roy. Soc., London. 121, 209–318 (1831)CrossRefGoogle Scholar
  3. Frenkel, Ya.I.: K teorii Tonksa o razryve poverhnosti zhidkosti postoyannym elektricheskim polem v vakuume. Zhurn. eksperim. i teor. fiziki 6(4), 348–350 (1936). (in Russian)Google Scholar
  4. Gandikota, G., Chatain, D., Amiroudine, S., Lyubimova, T., Beysens, D.: Faraday instability in a near-critical fluid under weightlessness. Phys. Rev. E 89, 013022–1–013022-1-9 (2014)Google Scholar
  5. Gaponenko, Yu., Shevtsova, V.: Shape of diffusive interface under periodic excitations at different gravity levels. Microgravity Sci. Technol. 28, 431–439 (2016)CrossRefGoogle Scholar
  6. Grigor’ev, A. I., Shiryaeva, S. O.: Criterion of instability of a charged drop in an electrostatic suspension. Surf. Eng. Appl. Electrochem. 51(3), 246–252 (2015)CrossRefGoogle Scholar
  7. Grigor’ev, A. I., Shiryaeva, S. O., Koromyslova, V. A., Belonozhko, D. F.: Capillary oscillations TtonksFrenkel instability of a liquid layer of finite thickness. Zh. Tekh Fiz. 67, 27–33 (1997)Google Scholar
  8. Grigor’ev, A. I., Shiryaeva, S. O., Belonozhko, D. F., Klimov, A. V.: O forme “konusa Teilora” i harakternom vremeni ego rosta. Electronnaya obrabotka materialov 4, 34–40 (2004). (in Russian)Google Scholar
  9. Lord Rayleigh, D. C.: On the crispations of fluid resting upon a vibrating support. Phil. Mag. 16(5), 50–58 (1883)CrossRefGoogle Scholar
  10. Lyubimov, D. V., Lyubimova, T. P., Cherepanov, A. A.: Dynamics of Fluid Interfaces in Vibrational Fields. Moscow, Nauka (2003). (in Russian)Google Scholar
  11. Nayfeh, A. H.: Introduction to perturbation techniques. Wiley Classics Library Edition (1993)Google Scholar
  12. Sadilov, E. S.: Vliyanie elektricheskogo polya na ryab’ Faradeya v yacheike Hele-Shou, soderzhachshei elektroprovodnuyu i dielektricheskuyu zhidkosti, XX Zimnyaya shkola po mehanike sploshnyh sred, Proceedings, 288-289, Institute of Continuous Media Mechanics Perm. (in Russian) (2017)Google Scholar
  13. Sir, G., Taylor, F. R. S.: Electrically driven jets. Proc. Roy. Soc. Lond. A. 313, 453–475 (1969)CrossRefGoogle Scholar
  14. Sorokin, V. I.: The effect of fountain formation at the surface of a vertically oscillating liquid. Sov. Phys. Acoust. 3, 281–291 (1957)Google Scholar
  15. Strutt, J. W.: (Baron Rayleigh), The Theory of Sound. Macmillan and Co, London (1877)Google Scholar
  16. Tonks, L. A.: A theory of liquid surface rupture by uniform electric field. Phys. Rev. 48, 562–568 (1935)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Continuous Media MechanicsPermRussia

Personalised recommendations